给自己看的(摘自他人)

目录

一.MobaXterm配置服务器python虚拟环境

1.创建虚拟环境

2.激活paddle_env虚拟环境

3.退出paddle_env虚拟环境

4.批量下载包

5.windows下创建虚拟环境

二.在linux下把python文件打包成可执行文件步骤

1.安装PyInstaller

2.使用PyInstaller打包python文件

3.linux编译C

三.服务器查看GPU卡使用情况的命令

四.单通道,三通道互转

五.Linux基础命令

1.定时任务  crontab -e

2.docker强制删除镜像

3.创建与删除文件

4.赋予权限

六.python脚本定时运行

七.创建进程

八.免密登录

九.DDPM相关快捷指令

一.MobaXterm配置服务器python虚拟环境

1.创建虚拟环境

2.激活paddle_env虚拟环境

3.退出paddle_env虚拟环境

4.批量下载包

5.windows下创建虚拟环境

二.在linux下把python文件打包成可执行文件步骤

1.安装PyInstaller

2.使用PyInstaller打包python文件

3.linux编译C

三.服务器查看GPU卡使用情况的命令

四.单通道,三通道互转

五.Linux基础命令

1.定时任务  crontab -e

2.docker强制删除镜像

六.python脚本定时运行

七.创建进程

八.免密登录

一.MobaXterm配置服务器python虚拟环境

1.创建虚拟环境

conda create -n paddle_env python=3.7
#列举所有的环境
conda env list
#删除某个环境
conda remove -n FAME_py36 --all

pip install torch==1.10.0+cu111 torchvision==0.11.0+cu111 torchaudio==0.10.0 -f https://download.pytorch.org/whl/torch_stable.html

pip3 install opencv-contrib-python -i https://pypi.tuna.tsinghua.edu.cn/simple

pip install torch==1.12.1+cu116 torchvision==0.13.1+cu116 torchaudio==0.12.1 -f https://download.pytorch.org/whl/torch_stable.html

重启docker的守护线程

systemctl daemon-reload
systemctl restart docker

du -h -x --max-depth=1
df -h

验证torch是否可用: 

import torch
print(torch.cuda.is_available())

ngpu= 1
# Decide which device we want to run on
print(torch.device("cuda:0" if (torch.cuda.is_available() and ngpu > 0) else "cpu"))
print(torch.cuda.get_device_name(0))
print(torch.rand(3,3).cuda()) 

2.激活paddle_env虚拟环境

source activate paddle_env

3.退出paddle_env虚拟环境

conda deactivate 

4.批量下载包

pip install -r requirements.txt

5.windows下创建虚拟环境

Python为什么要使用虚拟环境-Python虚拟环境的安装和配置-virtualenv_第一段代码的博客-CSDN博客_虚拟环境

二.在linux下把python文件打包成可执行文件步骤

1.安装PyInstaller

pip install pyinstaller
pyinstaller --version

2.使用PyInstaller打包python文件

  在和myscript.py同目录下执行命令:

pyinstaller mycript.py
/*
然后会看到新增加了两个目录build和dist,dist下面的文件就是可以发布的可执行文件,
你会发现dist目录下面有一堆文件,各种都动态库文件和myscrip可执行文件
*/
#pyInstaller支持单文件模式,只需要执行:
pyinstaller -F mycript.py
/*
你会发现dist下面只有一个可执行文件,这个单文件就可以发布了,可以运行在你正在使用的操作系统类似的系统的下面。
 */

3.linux编译C

linux 编译c程序与动态链接库_车斗的博客-CSDN博客

三.服务器查看GPU卡使用情况的命令

nvidia-smi

ps -aux | grep +账号名 可以看自己用的GPU,也可用该命令查看服务是否启动

ps -aux | grep +号码名 可以看该PID是谁用的GPU

ps -ef | grep python 可以看谁在用卡

cat gunicorn/gunicorn.pid 可以查看启动gunicorn的进程编号

i:进入编辑命令
esc:退出编辑命令
:wq保存退出

四.单通道,三通道互转

import PIL
import cv2
import numpy as np
import PIL.Image as Image
import os

def one_to_three():
    img_path = r'../inputs/'
    save_img_path = r'../inputs/'
    for img_name in os.listdir(img_path):
        image = Image.open(img_path + img_name)
        if len(image.split()) == 1:  # 查看通道数
            print(len(image.split()))
            img = cv2.imread(img_path + img_name)
            gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
            img2 = np.zeros_like(img)
            img2[:, :, 0] = gray
            img2[:, :, 1] = gray
            img2[:, :, 2] = gray
            cv2.imwrite(save_img_path + img_name, img2)
            image = Image.open(save_img_path + img_name)
            image.save(os.path.join(save_img_path,img_name))

def three_to_one():
    img_path = r'../results/13'
    save_img_path = r'../results/31'
    for file in os.listdir(img_path):
        image = Image.open(os.path.join(img_path, file))
        image=image.convert("L")
        image.save(os.path.join(save_img_path, file))

def check():
    img_path = r'../results/31'
    print("begin:")
    for file in os.listdir(img_path):
        image = PIL.Image.open(img_path+'/'+file)
        print(np.array(image).shape)
if __name__=='__main__':
    #one_to_three()
    #three_to_one()
    check()

五.Linux基础命令

1.定时任务  crontab -e

编辑:i        退出:ecs,:wq

* * * * *每分钟执行一次        30 0 * * *半夜十二点执行

2.docker强制删除镜像

docker rmi -f aaaa bbbbb        docker rm -f 容器 or docker stop 容器

3.创建与删除文件

rm -rf dir        sudo mkdir -p projects/fate

4.赋予权限

chown -R user dir          ps -aux | grep -v grep | grep docker-proxy 查看端口占用情况

六.python脚本定时运行

Win10环境下python脚本定时运行(Windows自带的定时任务)_you是mine的博客-CSDN博客_win10定时运行python脚本

七.创建进程

nohup python main.py > ./utils/output.log 2>&1 & 

查看情况 :tail -f ./utils/output.log

查看进程:ps

八.免密登录

桌面版的可以输入
gedit /etc/ssh/sshd_config
也可以输入
vim /etc/ssh/sshd_config
 
输入完成之后,你会打开一个文件修改其中如下几项:
 
PermitRootLogin yes
PasswordAuthentication yes
ChallengeResponseAuthentication yes
 
保证这几行取消了注释,并且为yes

ssh-keygen -t rsa
(四连回车)
如下(类似)即成功:
+---[RSA 2048]----+
|+o  .+oo.... o   |
|B= +.ooo... =    |
|=oX oo. o .=     |
|.B.+. .. oo .    |
|*o.  o  S  .     |
|*. +.            |
|o.+ .            |
|o.               |
|E                |
+----[SHA256]-----+
然后
cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys
然后授权
chmod 600 ~/.ssh/authorized_keys
此时你可以尝试免密登录自己的机器,刷~,就成功了

九.DDPM相关快捷指令

计算FID指数:python -m pytorch_fid imgs ge_imgs

python -m pytorch_fid results/DDPM/DDPM-256-1207-img medical_imgs/imgs_256

定时运行指令:

nohup python  train_DDPM.py > ./utils/t6.log 2>&1 &           tail -f ./output.log

nohup python  generate.py > test.log 2>&1 &

nohup python train_uncertainty_rectified_pyramid_consistency_2D.py --exp huaxi_img/URPC/49+0/swa2 --max_iterations 280 > ./utils/t6.log 2>&1 &
     

conda activate diffusers_env        accelerate launch train_unconditional.py

十.导出origin图到PPT

需要将origin.exe(百度网盘中)放入文件中,并运行(一周就会消失),edit->copy page

从图回到数据:1.点击图中的数据;2.点击下方的workbook

再次从数据回到图:1.左侧边栏;

十一.清除buffer缓存

echo 3 > /proc/sys/vm/drop_caches

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值