目录
一.MobaXterm配置服务器python虚拟环境
1.创建虚拟环境
conda create -n paddle_env python=3.7
#列举所有的环境
conda env list
#删除某个环境
conda remove -n FAME_py36 --all
pip install torch==1.10.0+cu111 torchvision==0.11.0+cu111 torchaudio==0.10.0 -f https://download.pytorch.org/whl/torch_stable.html
pip3 install opencv-contrib-python -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install torch==1.12.1+cu116 torchvision==0.13.1+cu116 torchaudio==0.12.1 -f https://download.pytorch.org/whl/torch_stable.html
重启docker的守护线程
systemctl daemon-reload
systemctl restart docker
du -h -x --max-depth=1
df -h
验证torch是否可用:
import torch
print(torch.cuda.is_available())
ngpu= 1
# Decide which device we want to run on
print(torch.device("cuda:0" if (torch.cuda.is_available() and ngpu > 0) else "cpu"))
print(torch.cuda.get_device_name(0))
print(torch.rand(3,3).cuda())
2.激活paddle_env虚拟环境
source activate paddle_env
3.退出paddle_env虚拟环境
conda deactivate
4.批量下载包
pip install -r requirements.txt
5.windows下创建虚拟环境
Python为什么要使用虚拟环境-Python虚拟环境的安装和配置-virtualenv_第一段代码的博客-CSDN博客_虚拟环境
二.在linux下把python文件打包成可执行文件步骤
1.安装PyInstaller
pip install pyinstaller
pyinstaller --version
2.使用PyInstaller打包python文件
在和myscript.py同目录下执行命令:
pyinstaller mycript.py
/*
然后会看到新增加了两个目录build和dist,dist下面的文件就是可以发布的可执行文件,
你会发现dist目录下面有一堆文件,各种都动态库文件和myscrip可执行文件
*/
#pyInstaller支持单文件模式,只需要执行:
pyinstaller -F mycript.py
/*
你会发现dist下面只有一个可执行文件,这个单文件就可以发布了,可以运行在你正在使用的操作系统类似的系统的下面。
*/
3.linux编译C
linux 编译c程序与动态链接库_车斗的博客-CSDN博客
三.服务器查看GPU卡使用情况的命令
nvidia-smi
ps -aux | grep +账号名 可以看自己用的GPU,也可用该命令查看服务是否启动
ps -aux | grep +号码名 可以看该PID是谁用的GPU
ps -ef | grep python 可以看谁在用卡
cat gunicorn/gunicorn.pid 可以查看启动gunicorn的进程编号
i:进入编辑命令
esc:退出编辑命令
:wq保存退出
四.单通道,三通道互转
import PIL
import cv2
import numpy as np
import PIL.Image as Image
import os
def one_to_three():
img_path = r'../inputs/'
save_img_path = r'../inputs/'
for img_name in os.listdir(img_path):
image = Image.open(img_path + img_name)
if len(image.split()) == 1: # 查看通道数
print(len(image.split()))
img = cv2.imread(img_path + img_name)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
img2 = np.zeros_like(img)
img2[:, :, 0] = gray
img2[:, :, 1] = gray
img2[:, :, 2] = gray
cv2.imwrite(save_img_path + img_name, img2)
image = Image.open(save_img_path + img_name)
image.save(os.path.join(save_img_path,img_name))
def three_to_one():
img_path = r'../results/13'
save_img_path = r'../results/31'
for file in os.listdir(img_path):
image = Image.open(os.path.join(img_path, file))
image=image.convert("L")
image.save(os.path.join(save_img_path, file))
def check():
img_path = r'../results/31'
print("begin:")
for file in os.listdir(img_path):
image = PIL.Image.open(img_path+'/'+file)
print(np.array(image).shape)
if __name__=='__main__':
#one_to_three()
#three_to_one()
check()
五.Linux基础命令
1.定时任务 crontab -e
编辑:i 退出:ecs,:wq
* * * * *每分钟执行一次 30 0 * * *半夜十二点执行
2.docker强制删除镜像
docker rmi -f aaaa bbbbb docker rm -f 容器 or docker stop 容器
3.创建与删除文件
rm -rf dir sudo mkdir -p projects/fate
4.赋予权限
chown -R user dir ps -aux | grep -v grep | grep docker-proxy 查看端口占用情况
六.python脚本定时运行
Win10环境下python脚本定时运行(Windows自带的定时任务)_you是mine的博客-CSDN博客_win10定时运行python脚本
七.创建进程
nohup python main.py > ./utils/output.log 2>&1 &
查看情况 :tail -f ./utils/output.log
查看进程:ps
八.免密登录
桌面版的可以输入
gedit /etc/ssh/sshd_config
也可以输入
vim /etc/ssh/sshd_config
输入完成之后,你会打开一个文件修改其中如下几项:
PermitRootLogin yes
PasswordAuthentication yes
ChallengeResponseAuthentication yes
保证这几行取消了注释,并且为yes
ssh-keygen -t rsa
(四连回车)
如下(类似)即成功:
+---[RSA 2048]----+
|+o .+oo.... o |
|B= +.ooo... = |
|=oX oo. o .= |
|.B.+. .. oo . |
|*o. o S . |
|*. +. |
|o.+ . |
|o. |
|E |
+----[SHA256]-----+
然后
cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys
然后授权
chmod 600 ~/.ssh/authorized_keys
此时你可以尝试免密登录自己的机器,刷~,就成功了
九.DDPM相关快捷指令
计算FID指数:python -m pytorch_fid imgs ge_imgs
python -m pytorch_fid results/DDPM/DDPM-256-1207-img medical_imgs/imgs_256
定时运行指令:
nohup python train_DDPM.py > ./utils/t6.log 2>&1 & tail -f ./output.log
nohup python generate.py > test.log 2>&1 &
nohup python train_uncertainty_rectified_pyramid_consistency_2D.py --exp huaxi_img/URPC/49+0/swa2 --max_iterations 280 > ./utils/t6.log 2>&1 &
conda activate diffusers_env accelerate launch train_unconditional.py
十.导出origin图到PPT
需要将origin.exe(百度网盘中)放入文件中,并运行(一周就会消失),edit->copy page
从图回到数据:1.点击图中的数据;2.点击下方的workbook
再次从数据回到图:1.左侧边栏;
十一.清除buffer缓存
echo 3 > /proc/sys/vm/drop_caches