耶鲁大学 博弈论(Game Theory) 笔记4-足球比赛与商业合作之最佳对策

耶鲁大学 博弈论(Game Theory) 笔记4-足球比赛与商业合作之最佳对策

点球博弈

在这里插入图片描述
其中 U 1 ( 4 , − 4 ) U_1(4,-4) U1(4,4)=4,即为我选择左路射门而对手选择左路防守时进球概率为40%。请添加图片描述
由图可见,选择M永远不是一个最佳对策(BR)

结论

不要选择在任何条件下都非最佳对策的策略。

最佳对策定义

参与者针对对手策略的定义

如果对 S i S_i Si的所有 s ‘ i s‘_i si
U i ( s ^ i , s − i ) ≥ U i ( s i ′ , s − i ) U_i(\hat{s}_i,s_{-i})\geq U_i(s'_i,s_{-i}) Ui(s^i,si)Ui(si,si)

则参与者 i i i的策略 s ^ i \hat{s}_i s^i是对其他参与者策略 s − i s_{-i} si的BR。
或者表示为如下形式,即最大化对手选择策略 s − 1 s_{-1} s1时我方的收益。
s ^ i s o l v e s s i m a x U i ( s i , s − 1 ) \hat{s}_i\quad solves_{s_i}^{max}U_i(s_i,s_{-1}) s^isolvessimaxUi(si,s1)

广义定义

扩展为广义定义后,参与者 i i i的策略 s ^ i \hat{s}_i s^i是对其他参与者策略选择持信念P的BR。在参与者持信念 P 的情况下选 s ^ i \hat{s}_i s^i获得的预期收益比在同样的信念p 下选其它策略,获得的预期收益都要高,对于可选的 s i ′ s'_i si均成立。
E U i ( s ^ i , P ) ≥ E U ( s i , P ) EU_i(\hat{s}_i,P)\geq EU(s_i,P) EUi(s^i,P)EU(si,P)
或表达为如下形式
s ^ i s o l v e s s i m a x E U i ( s i ′ , s − 1 ) \hat{s}_i\quad solves_{s_i}^{max}EU_i(s'_i,s_{-1}) s^isolvessimaxEUi(si,s1)
预期收益=我的收益1x对面选择1的概率+我的收益2x对面选择2的概率。

预期收益,此案例中,在参与人 i 持有信念P的情况下,他选择左路攻门的预期收益等于,门将扑向左路的概率乘以两人都选择左路下参与人 i 的收益,再加上门将扑向右路的概率乘以门将扑向右路参与人 i 左路进攻时,参与人 i 的收益,即
E U ( L , P ) = P ( l ) × U 1 ( L , l ) + P ( r ) × U 1 ( L , r ) EU(L,P)=P(l)\times U_1(L,l)+P(r)\times U_1(L,r) EU(L,P)=P(l)×U1(L,l)+P(r)×U1(L,r)

合伙人博弈

1.两个参与人都是公司股东,各持有公司 50%的股份,供应合伙关系;

2.每个股东要选择对公司投入精力,以“小时”表示,策略集合 Si=[0,4],这是一个连续区间,不是同于选数游戏中的只能选整数。

3.利润计算方式如下
4 × [ s 1 + s 2 + b ∗ s 1 ∗ s 2 ] 0 ≤ b ≤ 1 4 4\times[s_1+s_2+b*s_1*s_2] \quad 0\leq b \leq \frac{1}{4} 4×[s1+s2+bs1s2]0b41

其中b为协同或互补部分。

由此我们可以进行收益计算:
U 1 ( s 1 , s 2 ) = 1 2 [ 4 × [ s 1 + s 2 + b ∗ s 1 ∗ s 2 ] ] − s 1 2 U 2 ( s 1 , s 2 ) = 1 2 [ 4 × [ s 1 + s 2 + b ∗ s 1 ∗ s 2 ] ] − s 2 2 U_1(s_1,s_2)=\frac{1}{2}[4\times[s_1+s_2+b*s_1*s_2]]-s_1^2\\ U_2(s_1,s_2)=\frac{1}{2}[4\times[s_1+s_2+b*s_1*s_2]]-s_2^2 U1(s1,s2)=21[4×[s1+s2+bs1s2]]s12U2(s1,s2)=21[4×[s1+s2+bs1s2]]s22
其中 1 2 \frac{1}{2} 21为股份占比, s 1 2 s_1^2 s12为自身投入。

若要计算选 s 1 s_1 s1时的最大收益( s 2 s_2 s2为已知数):
M A X s 1 2 ( s 1 + s 2 + b ∗ s 1 ∗ s 2 ) − s 1 2 MAX_{s_1}\quad2(s_1+s_2+b*s_1*s_2)-s_1^2 MAXs12(s1+s2+bs1s2)s12
进行求导
2 ( 1 + b ∗ s 2 ) − 2 s 1 ^ = 0 s 1 ^ = 1 + b ∗ s 2 = B R ( s 2 ) 同 理 s 2 ^ = 1 + b ∗ s 1 = B R ( s 1 ) 2(1+b*s_2)-2\hat{s_1}=0\\ \hat{s_1}=1+b*s_2=BR(s_2)\\ 同理\\ \hat{s_2}=1+b*s_1=BR(s_1) 2(1+bs2)2s1^=0s1^=1+bs2=BR(s2)s2^=1+bs1=BR(s1)
此时令导数得零取得最值,再求二阶导判断最大最小,小于零,取得是最大值。
0 − 2 ≤ 0 0-2\leq0 020

B R ( s 1 ) BR(s_1) BR(s1) B R ( s 2 ) BR(s_2) BR(s2)可得:
B R 1 ( s 2 ) = 1 + ( 1 4 ) s 2 BR_1(s_2)=1+(\frac{1}{4})s_2 BR1(s2)=1+(41)s2

将BR用图表示,红色代表参与者1在不同 s 2 s_2 s2下的BR,蓝色为参与者2在不同 s 1 s_1 s1下的BR。
请添加图片描述
因为永远不要选择劣势策略,因此参与人1的 ( 0 , 1 ) ∪ ( 2 , 4 ) (0,1)\cup(2,4) (0,1)(2,4)策略被剔除。请添加图片描述
同理,参与人2的 ( 0 , 1 ) ∪ ( 2 , 4 ) (0,1)\cup(2,4) (0,1)(2,4)策略被剔除,只剩下中间的区域。
请添加图片描述
将中间区域放大,图像除了点坐标不同外和初始图像完全一样,再次剔除非BR,迭代剔除最终将归为一点。
在这里插入图片描述
{ s 1 ∗ = 1 + b s 2 ∗ s 2 ∗ = 1 + b s 1 ∗ → s 1 ∗ = s 2 ∗ = 1 1 − b \left\{ \begin{aligned} s_1^*=1+bs_2^* \\ s_2^*=1+bs_1^* \\ \end{aligned} \right. \rightarrow s_1^*=s_2^*=\frac{1}{1-b} {s1=1+bs2s2=1+bs1s1=s2=1b1

外部性

当我计算要为公司付出多少时,没有考虑到利润的一半会归别人所有。

如果减小协同系数b,那么两条线会越来越皆接近于平行和垂直,最终的点会越来越接近于(1,1)。

上图中的交点即是著名的纳什均衡点,在此处双方都采用了自己的最优反应。

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值