高等代数:5 矩阵的相抵与相似

5 矩阵的相抵与相似

5.1 等价关系与集合的划分

1、设S,M是两个集合,则集合 { ( a , b ) ∣ a ∈ S , b ∈ W } \{(a,b)|a \in S,b \in W\} {(a,b)aS,bW} 称为S与M的笛卡儿积,记作: S × M S \times M S×M

2、定义1:设S是一个非空集合,我们把 S × S S \times S S×S的一个子集W叫做S上的一个二元关系。如果 a , b ) ∈ W a,b)\in W a,b)W,那么称a与b有W关系;反之没有W关系。当a与b有W关系时,记作aWb,或 a ∼ b a\sim b ab

3、定义2:集合S上的一个二元关系 ∼ \sim 如果具有下述性质: ∀ a , b , c ∈ S \forall a,b,c\in S a,b,cS,有
( 1 ) a ∼ a ( 反 身 性 ) ; ( 2 ) a ∼ b    ⟹    b ∼ a ( 对 称 性 ) ; ( 3 ) a ∼ b 且 b ∼ c    ⟹    a ∼ c ( 传 递 性 ) 。 \begin{aligned} &(1)a\sim a &(反身性);\\ &(2)a\sim b\implies b\sim a& (对称性);\\ &(3)a\sim b且b\sim c \implies a\sim c &(传递性)。 \end{aligned} (1)aa(2)abba(3)abbcac
那么称 ∼ \sim 是S上的一个等价关系

4、定义3:设 ∼ \sim 是S上的一个等价关系, a ∈ S a\in S aS,令
a ˉ = def { x ∈ S ∣ x ∼ a } , \bar{a}\xlongequal{\text{def}}\{x\in S|x\sim a\}, aˉdef {xSxa},
则称 a ˉ \bar{a} aˉ是由 a a a确定的等价类

事实1: a ∈ a ˉ 于 是 也 把 a ˉ 称 为 a 的 等 价 类 。 a\in \bar{a}于是也把\bar{a}称为a的等价类。 aaˉaˉa

事实2: x ∈ b a r a    ⟺    x ∼ a . x\in bar{a}\iff x\sim a. xbaraxa.

事实3: x ˉ = y ˉ    ⟺    x ∼ y . \bar{x}=\bar{y}\iff x\sim y. xˉ=yˉxy.

5、定理1:设 ∼ \sim 是集合S上的一个等价关系,任取 a , b ∈ S a,b\in S a,bS,则 a ˉ = b ˉ \bar{a}=\bar{b} aˉ=bˉ或者 a ˉ ∩ b ˉ = ∅ \bar{a}\cap\bar{b}=\varnothing aˉbˉ=.

6、定义4:如果集合S是一些非空子集 S i ( i ∈ I , 这 里 I 表 示 指 标 集 ) S_i(i\in I,这里I表示指标集) SiiII的并集,并且其中不相等的子集一定不相交,那么称集合 { S i ∣ i ∈ I } \{S_i|i\in I\} {SiiI}是S的一个划分,记作: π ( S ) \pi(S) π(S)

7、定理2:设 ∼ \sim 是集合S上的一个等价关系,则所有等价类组成的集合是S的一个划分,记作: π ∼ ( S ) \pi_\sim(S) π(S)

8、定义5:设 ∼ \sim 是集合S上的一个等价关系。由所有等价类组成的集合称为S对于关系 ∼ \sim 商集,记作: S / ∼ S/\sim S/

5.2 矩阵的相抵

1、定义1:对于数域K上 s × n s \times n s×n矩阵A和B,如果从A经过一系列初等行变换和初等列变换能变成矩阵B,那么称A与B是相抵的,记作: A ∼ 相 抵 B A\overset{相抵}{\sim}B AB

容易验证相抵是 M s × n ( K ) M_{s \times n}(K) Ms×n(K)上的一个等价关系。在相抵关系下,矩阵A的等价类称为A的相抵类

事实1:数域K上 s × n s \times n s×n矩阵A和B相抵
   ⟺    A 可 以 经 过 初 等 行 变 换 和 初 等 列 变 换 变 成 B ,    ⟺    存 在 K 上 s 级 初 等 矩 阵 P 1 , P 2 , … , P t 与 n 级 初 等 矩 阵 Q 1 , Q 2 , … , Q m , 使 得 P t … P 2 P 1 A Q 1 Q 2 … Q m = B .    ⟺    存 在 K 上 s 级 可 逆 矩 阵 P 与 n 级 可 逆 矩 阵 Q , 使 得 : P A Q = B . ( 1 ) \begin{aligned} \iff&A可以经过初等行变换和初等列变换变成B,\\ \iff&存在K上s级初等矩阵P_1,P_2,\dots,P_t与n级初等矩阵Q_1,Q_2,\dots,Q_m,使得\\ &P_t\dots P_2P_1AQ_1Q_2\dots Q_m=B.\\ \iff&存在K上s级可逆矩阵P与n级可逆矩阵Q,使得:\\ &PAQ=B.&(1) \end{aligned} ABKsP1,P2,,PtnQ1,Q2,,Qm使PtP2P1AQ1Q2Qm=B.KsPnQ使PAQ=B.(1)
2、定理1:设数域K上 s × n s \times n s×n矩阵A的秩为r。如果 r > 0 r>0 r>0,那么A相抵于下述形式的矩阵:
( I r 0 0 0 ) , (2) \begin{pmatrix} I_r&0\\ 0&0 \end{pmatrix},\tag{2} (Ir000),(2)
称矩阵(2)为A的相抵标准形;如果r=0,那么A相抵于零矩阵,此时称A的相抵标准形是零矩阵。

3、定理2:数域K上 s × n s \times n s×n矩阵A和B相抵当且仅当它们的秩相等。

4、推论1:设数域K上 s × n s \times n s×n矩阵A的秩为 r ( r > 0 ) r(r>0) r(r>0),则存在K上的s级、n级可逆矩阵P、Q,使得
A = P ( I r 0 0 0 ) Q . (3) A=P\begin{pmatrix}I_r&0\\0&0\end{pmatrix}Q.\tag{3} A=P(Ir000)Q.(3)

5.3 广义逆矩阵

1、定理1:设A是数域K上 s × n s \times n s×n非零矩阵,则矩阵方程
A X A = A (1) AXA=A\tag{1} AXA=A(1)
一定有解。如果 t a n k ( A ) = r tank(A)=r tank(A)=r,并且
A = P ( I r 0 0 0 ) Q . (2) A=P\begin{pmatrix}I_r&0\\0&0\end{pmatrix}Q.\tag{2} A=P(Ir000)Q.(2)
其中P、Q分别是K上s级、n级可逆矩阵,那么矩阵方程(2)的通解为
X = Q − 1 ( I r B C D ) P − 1 (3) X=Q^{-1}\begin{pmatrix}I_r&B\\C&D\end{pmatrix}P_{-1}\tag{3} X=Q1(IrCBD)P1(3)
其中B、C、D分别是数域K上任意的 r × ( s − r ) , ( n − r ) × r , ( n − r ) × ( s − r ) r \times (s-r),(n-r) \times r,(n-r)\times (s-r) r×(sr),(nr)×r,(nr)×(sr)矩阵。

2、定义1:设A是数域K上 s × n s \times n s×n矩阵,矩阵方程AXA=A的每一个解都称为A的一个广义逆矩阵,简称A的广义逆,用 A − A^- A表示A的任意一个广义逆。

任意一个 s × n s \times n s×n矩阵都是 0 s × n 0_{s \times n} 0s×n的广义逆。

3、定理2(非齐次线性方程组的相容定理):非齐次线性方程组 A X = β AX=\beta AX=β有解的充分必要条件是:
β = A A − β . (4) \beta=AA^-\beta.\tag{4} β=AAβ.(4)
4、定理3(非齐次线性方程组的解的结构定理):非齐次线性方程组 A X = β AX=\beta AX=β有解时,它的通解为:
X = A − β . (5) X=A^-\beta.\tag{5} X=Aβ.(5)

5、定理4(齐次线性方程组的解的结构定理):数域K上n元齐次线性方程组AX=0的通解为:
X = ( I n − A − A ) Z . (6) X=(I_n-A^-A)Z.\tag{6} X=(InAA)Z.(6)
其中 A − A^- A是A的任意给定的一个广义逆,Z取遍 K n K^n Kn中任意列向量。

推论1:设数域K上n元非齐次线性方程组 A X = β AX=\beta AX=β有解,则它的通解为
X = A − β + ( I n − A − A ) Z . (7) X=A^-\beta+(I_n-A^-A)Z.\tag{7} X=Aβ+(InAA)Z.(7)
其中 A − A^- A是A的任意给定的一个广义逆,Z取遍 K n K^n Kn中任意列向量。

6、定义2:设A是复数域上 s × n s \times n s×n矩阵,矩阵方程组
{ A X A = A X A X = X ( A X ) ∗ = A X ( X A ) ∗ = X A (8) \begin{cases} AXA&=A\\ XAX&=X\\ (AX)^*&=AX\\ (XA)^*&=XA \end{cases}\tag{8} AXAXAX(AX)(XA)=A=X=AX=XA(8)
称为A的Penrose 方程组,它的解称为A的Moore-Penrose 广义逆,记作: A + A^+ A+。(8)式中 ( A X ) ∗ (AX)^* (AX)表示把AX的每个元素取共轭复数得到的矩阵再转置。

7、定理5:如果A是复数域上 s × n s \times n s×n非零矩阵,A的 Penrose 方程组总是有解,并且它的解唯一。设A=BC,其中B、C分别是列满秩与行满秩矩阵,则 Penrose 方程组的唯一解是
X = C ∗ ( C C ∗ ) − 1 ( B ∗ B ) − 1 B ∗ . (9) X=C^*(CC^*)^{-1}(B^*B)^{-1}B^*.\tag{9} X=C(CC)1(BB)1B.(9)

5.4 矩阵的相似

1、定义1:设A与B都是数域K上n级矩阵,如果存在数域K上一个n级可逆矩阵P,使得
P − 1 A P = B , (1) P^{-1}AP=B,\tag{1} P1AP=B,(1)
那么称A与B是相似的,记作: A ∼ B A\sim B AB

相似关系是一种等价关系,相似关系下的等价类称为相似类。相似具有下列性质:

性质1:如果 B 1 = P − 1 A 1 P ,   B 2 = P − 1 A 2 P B_1=P^{-1}A_1P,\,B_2=P^{-1}A_2P B1=P1A1P,B2=P1A2P,那么
B 1 + B 2 = P − 1 ( A 1 + A 2 ) P , B 1 B 2 = P − 1 ( A 1 A 2 ) P , B 1 m = P − 1 A 1 m P , \begin{aligned} B_1+B_2&=P^{-1}(A_1+A_2)P,\\ B_1B_2&=P^{-1}(A_1A_2)P,\\ B_1^m&=P^{-1}A_1^mP, \end{aligned} B1+B2B1B2B1m=P1(A1+A2)P,=P1(A1A2)P,=P1A1mP,
其中m是正整数。

性质2:相似的矩阵其行列式的值相等。

性质3:相似的矩阵或者都可逆,或者都不可逆;当他们可逆时,它们的你矩阵也相似。

性质4:相似的矩阵有相等的秩。

2、定义2:n级矩阵 A = ( a i j ) A=(a_{ij}) A=(aij)的主对角线上元素的和称为A的,记作 tr(A)。即
t r ( A ) = a 11 + a 22 + ⋯ + a n n (2) tr(A)=a_{11}+a_{22+\dots+a_{nn}}\tag{2} tr(A)=a11+a22++ann(2)
命题1:矩阵的迹具有下列性质:
t r ( A + B ) = t r ( A ) + t r ( B ) , t r ( k A ) = k ⋅ t r ( A ) , t r ( A B ) = t r ( B A ) . \begin{aligned} tr(A+B)&=tr(A)+tr(B),\\ tr(kA)&=k\cdot tr(A),\\ tr(AB)&=tr(BA). \end{aligned} tr(A+B)tr(kA)tr(AB)=tr(A)+tr(B),=ktr(A),=tr(BA).
由此可见,矩阵的迹是从矩阵乘法的非交换性中提取的可交换的量。

性质5:相似的矩阵有相等的迹。

性质2、4、5表明:矩阵的行列式、秩、迹都是相似关系下的不变量,简称为相似不变量

3、如果n级矩阵A能够相似于一个对角矩阵,那么称A可对角化

定理1:数域K上n级矩阵可对角化的充分必要条件是, K n K^n Kn中有n个线性无关的列向量 α 1 , α 2 , … , α n \alpha_1,\alpha_2,\dots,\alpha_n α1,α2,,αn,以及K中有n个数 λ 1 , λ 2 , … , λ n \lambda_1,\lambda_2,\dots,\lambda_n λ1,λ2,,λn(它们之中有些可能相等),使得
A α i = λ i α i , i = 1 , 2 , … , n . (3) A\alpha_i=\lambda_i\alpha_i,\qquad i=1,2,\dots,n.\tag{3} Aαi=λiαi,i=1,2,,n.(3)
这时,令 P = ( α 1 , α 2 , … , α n ) P=(\alpha_1,\alpha_2,\dots,\alpha_n) P=α1,α2,,αn,则
P − 1 A P = d i a g { λ 1 , λ 2 , … , λ n } . (4) P^{-1}AP=diag\{\lambda_1,\lambda_2,\dots,\lambda_n\}.\tag{4} P1AP=diag{λ1,λ2,,λn}.(4)

5.5 矩阵的特征值和特征向量

1、定义1:设A是数域K上n级矩阵,如果 K n K^n Kn中有非零列向量 α \alpha α,使得
A α = λ 0 α , 且 λ 0 ∈ K , A\alpha=\lambda_0\alpha,且\lambda_0\in K, Aα=λ0α,λ0K,
那么称 λ 0 \lambda_0 λ0是A的一个特征值,称向量 α \alpha α是A的属于特征值 λ 0 \lambda_0 λ0的一个特征向量

如果 α \alpha α是A的属于特征值 λ 0 \lambda_0 λ0的一个特征向量,那么显然,当 k ≠ 0 时 , k α k\not=0时,k\alpha k=0kα也是A的属于特征值 λ 0 \lambda_0 λ0的一个特征向量。

注意:零向量不是A的特征向量。
λ 0 是 A 的 一 个 特 征 值 , α 是 A 的 属 于 λ 0 的 一 个 特 征 向 量    ⟺    A α = λ 0 α , α ≠ 0 , λ 0 ∈ K    ⟺    ( λ 0 I − A ) α = 0 , α ≠ 0 , λ 0 ∈ K    ⟺    α 是 齐 次 线 性 方 程 组 ( λ 0 I − A ) X = 0 的 一 个 非 零 解 , λ 0 ∈ K    ⟺    ∣ λ 0 I − A ∣ = 0 , α 是 ( λ 0 I − A ) X = 0 的 一 个 非 零 解 , λ 0 ∈ K    ⟺    λ 0 是 多 项 式 ∣ λ I − A ∣ 在 K 中 的 一 个 根 , α 是 ( λ 0 I − A ) X = 0 的 一 个 非 零 解 。 \begin{aligned} &\lambda_0是A的一个特征值,\alpha是A的属于\lambda_0的一个特征向量\\ \iff&A\alpha=\lambda_0\alpha,\alpha\not=\bold 0,\lambda_0\in K\\ \iff&(\lambda_0I-A)\alpha=\bold 0,\alpha\not=\bold 0,\lambda_0\in K\\ \iff&\alpha 是齐次线性方程组(\lambda_0I-A)X=\bold 0的一个非零解,\lambda_0\in K\\ \iff&|\lambda_0I-A|=0,\alpha 是(\lambda_0I-A)X=\bold 0的一个非零解,\lambda_0\in K\\ \iff&\lambda_0是多项式|\lambda I-A|在K中的一个根,\alpha 是(\lambda_0I-A)X=\bold 0的一个非零解。 \end{aligned} λ0AαAλ0Aα=λ0α,α=0,λ0K(λ0IA)α=0,α=0,λ0Kα线(λ0IA)X=0λ0Kλ0IA=0,α(λ0IA)X=0λ0Kλ0λIAKα(λ0IA)X=0
∣ λ I − A ∣ |\lambda I-A| λIA称为A的特征多项式

2、定理1:设A是数域K上n级矩阵,则
( 1 ) λ 0 是 A 的 一 个 特 征 值 当 且 仅 当 λ 0 是 A 的 特 征 多 项 式 ∣ λ I − A ∣ 在 K 中 的 一 个 根 ; ( 2 ) α 是 A 的 属 于 特 征 值 λ 0 的 一 个 特 征 向 量 当 且 仅 当 α 是 齐 次 线 性 方 程 组 ( λ 0 I − A ) X = 0 的 一 个 非 零 解 。 \begin{aligned} &(1)\lambda_0 是A的一个特征值当且仅当\lambda_0是A的特征多项式|\lambda I-A|在K中的一个根;\\ &(2)\alpha 是A的属于特征值\lambda_0的一个特征向量当且仅当\alpha是齐次线性方程组(\lambda_0I-A)X=\bold 0的一个非零解。 \end{aligned} (1)λ0Aλ0AλIAK(2)αAλ0α线(λ0IA)X=0
λ 0 \lambda_0 λ0是A的一个特征值,把齐次线性方程组 ( λ 0 I − A ) X = 0 (\lambda_0I-A)X=\bold 0 (λ0IA)X=0的解空间称为A的属于 λ 0 \lambda_0 λ0特征子空间,其中全部非零向量就是A的属于 λ 0 \lambda_0 λ0的全部特征向量。

相似矩阵性质:

性质1:相似的矩阵具有相等的特征多项式。

性质2:相似的矩阵有相同的特征值(包括重复特征值数量,简称重数相同)。

由性质1、2看出,矩阵的特征多项式和特征值都是相似不变量。

命题1:设A是数域K上n级矩阵,则A的特征多项式 ∣ λ I − A ∣ |\lambda I-A| λIA是一个n次多项式, λ n \lambda^n λn的系数是1, λ n − 1 \lambda^{n-1} λn1的系数是等于-tr(A),常数项为 ( − 1 ) n ∣ A ∣ , λ n − k (-1)^n|A|,\lambda^{n-k} (1)nAλnk的系数为A的所有k阶主子式的和乘以 ( − 1 ) k , 1 ⩽ k < n (-1)^k,1\leqslant k<n (1)k,1k<n

3、定义2:设A是数域K上n级矩阵, λ 1 \lambda_1 λ1是A的一个特征值。把A的属于 λ 1 \lambda_1 λ1的特征子空间的维数叫做特征值 λ 1 \lambda_1 λ1几何重数,而把 λ 1 \lambda_1 λ1作为作为A的特征多项式的根的重数叫做 λ 1 \lambda_1 λ1代数重数,把代数重数简称为重数。

命题2:设 λ 1 \lambda_1 λ1是数域K上n级矩阵A的一个特征值,则 λ 1 \lambda_1 λ1的几何重数不超过它的代数重数。

5.6 矩阵可对角化的条件

1、定理1:数域K上n级矩阵A可对角化的充分必要条件是A有n个线性无关的特征向量 α 1 , α 2 , … , α n \alpha_1,\alpha_2,\dots,\alpha_n α1,α2,,αn,此时
令 P = ( α 1 , α 2 , … , α n ) , 则 P − 1 A P = d i a g { λ 1 , λ 2 , … , λ n } , \begin{aligned} &令&P&=(\alpha_1,\alpha_2,\dots,\alpha_n),\\ &则&P^{-1}AP&=diag\{\lambda_1,\lambda_2,\dots,\lambda_n \}, \end{aligned} PP1AP=(α1,α2,,αn),=diag{λ1,λ2,,λn},
其中 λ i \lambda_i λi α i \alpha_i αi所属的特征值, i = 1 , 2 , … , n i=1,2,\dots,n i=1,2,,n。上述对角矩阵称为A 的相似标准形,除了主对角线上元素的排列次序外,A的相似标准形是唯一的。

2、定理2:设 λ 1 , λ 2 \lambda_1,\lambda_2 λ1,λ2是数域K上n级矩阵A的不同的特征值, α 1 , α 2 , … , α s 与 β 1 , β 2 , … , β r \alpha_1,\alpha_2,\dots,\alpha_s与\beta_1,\beta_2,\dots,\beta_r α1,α2,,αsβ1,β2,,βr分别是A的属于 λ 1 , λ 2 \lambda_1,\lambda_2 λ1,λ2的线性无关的特征向量,则 α 1 , α 2 , … , α s , β 1 , β 2 , … , β r \alpha_1,\alpha_2,\dots,\alpha_s,\beta_1,\beta_2,\dots,\beta_r α1,α2,,αs,β1,β2,,βr线性无关。

3、定理3:设 λ 1 , λ 2 , … , λ m \lambda_1,\lambda_2,\dots,\lambda_m λ1,λ2,,λm是数域K上n级矩阵A的不同的特征值, α j 1 , … , α j r j \alpha_{j1},\dots,\alpha_{jr_j} αj1,,αjrj是A的属于 λ j \lambda_j λj的线性无关的特征向量, j = 1 , 2 , … , m j=1,2,\dots,m j=1,2,,m。则向量组
α 11 , … , α a r 1 , … … , α m 1 , … , α m r m \alpha_{11},\dots,\alpha_{ar_1},\dots\dots,\alpha_{m1},\dots,\alpha_{mr_m} α11,,αar1,,αm1,,αmrm
线性无关。

推论1:n级矩阵A的属于不同特征值的特征向量是线性无关的。

4、定理4:数域K上n级矩阵A可对角化的充分必要条件是:A的属于不同特征值的特征子空间的维数之和等于n。

推论2:数域K上n级矩阵A如果有n个不同的特征值,那么A可对角化。

5、定理5:数域K上n级矩阵A可对角化的充分必要条件是:A的特征多项式的全部复根都属于K,并且A的每个特征值的几何重数等于它的代数重数。

5.7 实对称矩阵的对角化

1、定义1:实数域上的矩阵简称为实对称矩阵。

定理1:实对称矩阵的特征多项式的每一个复根都是实数,从而它们都是特征值。

2、定理2:实对称矩阵A的属于不同特征值的特征向量是正交的。

3、定义2:如果对于n级实矩阵A、B,存在一个n级正交矩阵T,使得 T − 1 A T = B T^{-1}AT=B T1AT=B,那么称A正交相似于B。

定理3:实对称矩阵一定正交相似于对角矩阵。

命题1:如果n级实矩阵A正交相似于一个对角矩阵D,那么A一定是对称矩阵。

命题2:两个n级实对称矩阵正交相似的充分必要条件是它们相似。

  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

南村少年

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值