高等代数:4 矩阵的运算

4 矩阵的运算

4.1 矩阵的运算

1、数域K上两个矩阵称为相等,如果它们的行数相等,列数也相等,并且它们的所有元素对应相等。

2、定义1:设 A = ( a i j ) , B = ( b i j ) A=(a_{ij}),B=(b_{ij}) A=(aij),B=(bij)都是数域K上 s × n s \times n s×n矩阵,令
C = ( a i j + b i j ) s × n , C=(a_{ij}+b_{ij})_{s \times n}, C=(aij+bij)s×n,
则称矩阵C是矩阵A与B的和,记作 C = A + B C=A+B C=A+B

3、定义2:设 A = ( a i j ) A=(a_{ij}) A=(aij)是数域K上 s × n s \times n s×n矩阵, k ∈ K k\in K kK,令
M = ( k a i j ) s × n , M=(ka_{ij})_{s \times n}, M=(kaij)s×n,
则称矩阵M是k与矩阵A的数量乘积,记作 M = k A M=kA M=kA

4、设 A = ( a i j ) A=(a_{ij}) A=(aij),矩阵 ( − a i j ) (-a_{ij}) (aij)称为A的负矩阵,记作—A。容易验证,矩阵的加法与数量乘法运算满足类似于n维向量的加法与数量乘法所满足的8条运算法则。并可由负矩阵概念定义矩阵减法运算。

5、定义3:设 A = ( a i j ) s × n A=(a_{ij})_{s \times n} A=(aij)s×n B = ( b i j ) n × m B=(b_{ij})_{n \times m} B=(bij)n×m,令
C = ( c i j ) s × m , C=(c_{ij})_{s \times m}, C=(cij)s×m,
其中
c i j = a i 1 b 1 j + a i 2 b 2 j + ⋯ + a i n b n j = ∑ k = 1 n a i k b k j   ,   i = 1 , 2 , … , s ; j = 1 , 2 , … , m . c_{ij}=a_{i1}b_{1j}+a_{i2}b_{2j}+\dots+a_{in}b_{nj}=\sum_{k=1}^n a_{ik}b_{kj}\, ,\, i=1,2,\dots,s;j=1,2,\dots,m. cij=ai1b1j+ai2b2j++ainbnj=k=1naikbkj,i=1,2,,s;j=1,2,,m.
则称矩阵C为矩阵A与矩阵B的乘积,记作 C = A B C=AB C=AB

注:

(1)只有左矩阵的列数与右矩阵的行数相同的两个矩阵才能相乘;

(2)乘积矩阵的 ( i , j ) (i,j) (i,j)元等于左矩阵的第 i i i行与右矩阵的第 j j j列的对应元素的乘积之和;

(3)乘积矩阵的行数等于左矩阵的行数,乘积矩阵的列数等于右矩阵的列数。

6、对于 A B = 0 AB=0 AB=0,若 B ≠ 0 B\not=0 B=0,则称A是一个左零因子,若 A ≠ 0 A\not=0 A=0,则称B是是一个右零因子,左零因子和右零因子统称为零因子。显然,零矩阵是零因子,称为平凡的零因子

7、矩阵的乘法适合结合律左右分配律。另与数量乘法一起满足: k ( A B ) = ( k A ) B = A ( k B ) k(AB)=(kA)B=A(kB) k(AB)=(kA)B=A(kB)

8、主对角线上元素都是1,其余元素为0的n级矩阵称为n级单位矩阵,记作 I n I_n In,或简记 I I I k I kI kI称为数量矩阵

9、若 A B = B A AB=BA AB=BA,则称A与B可交换。数量矩阵与任一同级矩阵可交换。

10、由于矩阵的乘法适合结合律,因此可定义n级矩阵A的非负整数次幂:
A m = def A ⋅ A ⋅ … ⋅ A ,   m ∈ Z + ; A 0 = def I . \begin{aligned} &A^m\xlongequal{\text{def}}A\cdot A\cdot \ldots\cdot A,\,m\in Z^+;\\ &A^0\xlongequal{\text{def}}I. \end{aligned} Amdef AAA,mZ+;A0def I.
容易看出,对于任意自然数 k , l k,l k,l有:
A k A l = A k + l ,   ( A k ) l = A k l . A^kA^l=A^{k+l},\,(A^k)^l=A^{kl}. AkAl=Ak+l,(Ak)l=Akl.
注:由于矩阵乘法不满足交换律,故一般来说, ( A B ) k ≠ A k B k (AB)^k\not=A^kB^k (AB)k=AkBk

11、对于矩阵转置有:
( 1 ) ( A + B ) ′ = A ′ + B ′ ; ( 2 ) ( k A ) ′ = k A ′ ; ( 3 ) ( A B ) ′ = B ′ A ′ . \begin{aligned} (1)\qquad&(A+B)'=A'+B';\\ (2)\qquad&(kA)'=kA';\\ (3)\qquad&(AB)'=B'A'. \end{aligned} (1)(2)(3)(A+B)=A+B;(kA)=kA;(AB)=BA.

4.2 特殊矩阵

1、对角矩阵

定义1:主对角线以外的元素全为0的方阵称为对角矩阵,简记作: d i a g { d 1 , d 2 , … , d n } diag\{d_1,d_2,\dots,d_n\} diag{d1,d2,,dn}

命题1:用一个对角矩阵左(右)乘一个矩阵A,就相当于用对角矩阵的主对角元分别去乘A的相应的行(列)。

2、基本矩阵

定义2:只有一个元素是1,其余元素全为0的矩阵称为基本矩阵 ( i , j ) (i,j) (i,j)元为1的基本矩阵记作 E i j E_{ij} Eij。故:
A = ( a i j ) s × n = [ a 11 a 12 . . . a 1 n a 21 a 22 . . . a 2 n ⋮ ⋮ ⋮ a s 1 a s 2 . . . a s n ] = a 11 E 11 + a 12 E 12 + ⋯ + a s n E s n = ∑ i = 1 s ∑ j = 1 n a i j E i j . A=(a_{ij})_{s \times n}=\begin{bmatrix} a_{11} & a_{12} & ... & a_{1n} \\ a_{21} & a_{22} & ... & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{s1} & a_{s2} & ... & a_{sn} \end{bmatrix}=a_{11}E_{11}+a_{12}E_{12}+\dots+a_{sn}E_{sn}=\sum_{i=1}^s\sum_{j=1}^n a_{ij}E_{ij}. A=(aij)s×n=a11a21as1a12a22as2.........a1na2nasn=a11E11+a12E12++asnEsn=i=1sj=1naijEij.

命题2:用 E i j E_{ij} Eij左乘一个矩阵A,就相当于把A的第j行搬到第i行的位置,而乘积矩阵的其余行全为零行;用 E i j E_{ij} Eij右乘一个矩阵A,就相当于把A的第j列搬到第i列的位置,而乘积矩阵的其余列全为零列。故:
E i j E k l = { E i l 当 k = j ; 0 当 k ≠ j . E i j A E k l = a j k E i l . \begin{aligned} &E_{ij}E_{kl}= \begin{cases} E_{il}&当k=j; \\ 0&当k\not=j. \end{cases} \\ &E_{ij}AE_{kl}=a_{jk}E_{il}. \end{aligned} EijEkl={Eil0k=j;k=j.EijAEkl=ajkEil.
3、上(下)三角矩阵

定义3:主对角线下(上)方元素全为0的方阵称为上(下)三角矩阵。

A为上三角矩阵的充分必要条件:
a i j = 0 , 当 i > j .   A = ∑ i = 1 n ∑ j = 1 n a i j E i j . a_{ij}=0,当i>j.\, A=\sum_{i=1}^n\sum_{j=1}^n a_{ij}E_{ij}. aij=0,i>j.A=i=1nj=1naijEij.
命题3:两个n级上三角矩阵A与B的乘积仍为上三角矩阵,并且AB的主对角线元素等于A与B的相应主对角元的乘积。两个n级下三角矩阵A与B的乘积仍为下三角矩阵,并且AB的主对角线元素等于A与B的相应主对角元的乘积。

4、初等矩阵

定义4:由单位矩阵经过一次初等行(列)变换得到的矩阵称为初等矩阵。容易得出,初等矩阵只有下面三种类型:

I → ( j ) + ( i ) ⋅ k P ( j , i ( k ) ) , I → ( i , j ) P ( i , j ) , I → ( i ) ⋅ c P ( i ( c ) ) ,   c ≠ 0 ; \begin{aligned} &I\xrightarrow{(j)+(i)\cdot k}P(j,i(k)),\\ &I\xrightarrow{(i,j)}P(i,j),\\ &I\xrightarrow{(i)\cdot c}P(i(c)),\, c\not=0; \end{aligned} I(j)+(i)k P(j,i(k)),I(i,j) P(i,j),I(i)c P(i(c)),c=0;
设A是一个 s × n s \times n s×n矩阵,它的行向量组是 γ 1 , γ 2 , … , γ s \gamma_1,\gamma_2,\dots,\gamma_s γ1,γ2,,γs;列向量组是 α 1 , α 2 , … , α n \alpha_1,\alpha_2,\dots,\alpha_n α1,α2,,αn。则
P ( j , i ( k ) ) A = [ 1 ⋱ 1 ⋮ ⋱ k … 1 ⋱ 1 ] [ γ 1 γ 2 ⋮ γ s ] = [ γ 1 ⋮ γ i ⋮ k γ i + γ j ⋮ γ s ] , A P ( j , i ( k ) ) = ( α 1 , α 2 , … , α n ) [ 1 ⋱ 1 ⋮ ⋱ k … 1 ⋱ 1 ] = ( α 1 , … , α i + k α j , … , α j , … , α n ) \begin{aligned} &P(j,i(k))A=\begin{bmatrix} 1 & & & & & & \\ &\ddots& & & & & \\ & & 1 & & & & \\ & &\vdots&\ddots& & & \\ & & k &\dots &1 & & \\ & & & & &\ddots& \\ & & & & & & 1 \end{bmatrix} \begin{bmatrix} \gamma_1 \\ \gamma_2 \\ \vdots \\ \gamma_s \end{bmatrix}= \begin{bmatrix} \gamma_1 \\ \vdots \\ \gamma_i \\ \vdots \\ k\gamma_i+\gamma_j \\ \vdots \\ \gamma_s \end{bmatrix} ,\\ &AP(j,i(k))=(\alpha_1,\alpha_2,\dots,\alpha_n)\begin{bmatrix} 1 & & & & & & \\ &\ddots& & & & & \\ & & 1 & & & & \\ & &\vdots&\ddots& & & \\ & & k &\dots &1 & & \\ & & & & &\ddots& \\ & & & & & & 1 \end{bmatrix}=(\alpha_1,\dots,\alpha_i+k\alpha_j,\dots,\alpha_j,\dots,\alpha_n) \end{aligned} P(j,i(k))A=11k11γ1γ2γs=γ1γikγi+γjγs,AP(j,i(k))=(α1,α2,,αn)11k11=(α1,,αi+kαj,,αj,,αn)
由上诉看出:
用 P ( j , i ( k ) ) 左 乘 A , 就 相 当 于 把 A 的 第 i 行 的 k 倍 加 到 第 j 行 上 , 其 余 行 不 变 ; 用 P ( j , i ( k ) ) 右 乘 A , 就 相 当 于 把 A 的 第 j 列 的 k 倍 加 到 第 i 列 上 , 其 余 列 不 变 ; 用 P ( i , j ) 左 ( 右 ) 乘 A , 就 相 当 于 把 A 的 第 i 行 ( 列 ) 与 第 j 行 ( 列 ) 互 换 , 其 余 行 ( 列 ) 不 变 ; 用 P ( i ( c ) ) ( c ≠ 0 ) 左 ( 右 ) 乘 A , 就 相 当 于 用 c 乘 A 的 第 i 行 ( 列 ) , 其 余 行 ( 列 ) 不 变 。 \begin{aligned} &用P(j,i(k))左乘A,就相当于把A的第i行的k倍加到第j行上,其余行不变;\\ &用P(j,i(k))右乘A,就相当于把A的第j列的k倍加到第i列上,其余列不变;\\ &用P(i,j)左(右)乘A,就相当于把A的第i行(列)与第j行(列)互换,其余行(列)不变;\\ &用P(i(c))(c\not=0)左(右)乘A,就相当于用c乘A的第i行(列),其余行(列)不变。 \end{aligned} P(j,i(k))AAikjP(j,i(k))AAjkiP(i,j)AAijP(i(c))(c=0)AcAi
定理1:用初等矩阵左(右)乘一个矩阵A,就相当于A作了一次相应的初等行(列)变换。

5、对称矩阵

定义5:一个矩阵A如果满足 A ′ = A A'=A A=A,那么称A是对称矩阵

命题4:设A、B都是数域K上的n级对称矩阵,则 A + B , k A ( k ∈ K ) A+B,kA(k\in K) A+BkA(kK)都是对称矩阵。

命题5:设A、B都是数域K上的n级对称矩阵,则AB为对称矩阵的充分必要条件是A与B可交换。

6、斜对称矩阵

定义6:一个矩阵A如果满足 A ′ = − A A'=-A A=A,那么称A是斜对称矩阵

命题6:数域K上奇数级斜对称矩阵的行列式等于0。

4.3 矩阵乘积的秩与行列式

1、定理1:设 A = ( a i j ) s × n , B = ( b i j ) n × m , 则 : r a n k ( A B ) ⩽ m i n { r a n k ( A ) , r a n k ( B ) } . A=(a_{ij})_{s \times n},B=(b_{ij})_{n \times m},则:rank(AB)\leqslant min\{rank(A),rank(B)\}. A=(aij)s×n,B=(bij)n×mrank(AB)min{rank(A),rank(B)}.

2、定理2:设 A = ( a i j ) n × n , B = ( b i j ) n × n , 则 : ∣ A B ∣ = ∣ A ∣ ∣ B ∣ . A=(a_{ij})_{n \times n},B=(b_{ij})_{n \times n},则:|AB|=|A||B|. A=(aij)n×n,B=(bij)n×nAB=AB.

3、定理3(Binet-Cauchy公式): A = ( a i j ) s × n , B = ( b i j ) n × s , A=(a_{ij})_{s \times n},B=(b_{ij})_{n \times s}, A=(aij)s×n,B=(bij)n×s
( 1 ) 如 果 s > n , 那 么 ∣ A B ∣ = 0 ; ( 2 ) 如 果 s ⩽ n , 那 么 ∣ A B ∣ 等 于 A 的 所 有 s 阶 子 式 与 B 的 相 应 s 阶 子 式 的 乘 积 之 和 , 即 ∣ A B ∣ = ∑ 1 ⩽ v 1 < v 2 < ⋯ < v s ⩽ n A ( 1 , 2 , … , s v 1 , v 2 , … , v s ) ⋅ B ( v 1 , v 2 , … , v s 1 , 2 , … , s ) . \begin{aligned} &(1)如果s>n,那么|AB|=0;\\ &(2)如果s\leqslant n,那么|AB|等于A的所有s阶子式与B的相应s阶子式的乘积之和,即\\ &|AB|=\sum_{1\leqslant v_1<v_2<\dots<v_s\leqslant n} A\begin{pmatrix} 1,2,\dots,s \\ v_1,v_2,\dots,v_s \end{pmatrix}\cdot B\begin{pmatrix} v_1,v_2,\dots,v_s \\ 1,2,\dots,s \end{pmatrix}. \end{aligned} (1)s>nAB=0(2)snABAsBsAB=1v1<v2<<vsnA(1,2,,sv1,v2,,vs)B(v1,v2,,vs1,2,,s).
4、命题1:设 A = ( a i j ) s × n , B = ( b i j ) n × s , 设 正 整 数 r ⩽ s A=(a_{ij})_{s \times n},B=(b_{ij})_{n \times s},设正整数r\leqslant s A=(aij)s×n,B=(bij)n×srs
( 1 ) 如 果 r > n , 那 么 A B 的 所 有 r 阶 子 式 都 等 于 0 ; ( 2 ) 如 果 r ⩽ n , 那 么 A B 的 任 一 r 阶 子 式 为 A B ( i 1 , i 2 , … , i r j 1 , j 2 , … , j r ) = ∑ 1 ⩽ v 1 < v 2 < ⋯ < v r ⩽ n A ( i 1 , i 2 , … , i r v 1 , v 2 , … , v r ) ⋅ B ( v 1 , v 2 , … , v r j 1 , j 2 , … , j r ) . \begin{aligned} &(1)如果r>n,那么AB的所有r阶子式都等于0;\\ &(2)如果r\leqslant n,那么AB的任一r阶子式为\\ &AB\begin{pmatrix} i_1,i_2,\dots,i_r \\ j_1,j_2,\dots,j_r \end{pmatrix}=\sum_{1\leqslant v_1<v_2<\dots<v_r\leqslant n} A\begin{pmatrix} i_1,i_2,\dots,i_r \\ v_1,v_2,\dots,v_r \end{pmatrix}\cdot B\begin{pmatrix} v_1,v_2,\dots,v_r \\ j_1,j_2,\dots,j_r \end{pmatrix}. \end{aligned} (1)r>nABr0(2)rnABrAB(i1,i2,,irj1,j2,,jr)=1v1<v2<<vrnA(i1,i2,,irv1,v2,,vr)B(v1,v2,,vrj1,j2,,jr).
5、矩阵A的一个子式如果行指标与列指标相同,那么称它为A的一个主子式

4.4 可逆矩阵

1、定义1:对于数域K上矩阵A,如果存在数域K上矩阵B,使得
A B = B A = I (1) AB=BA=I \tag{1} AB=BA=I(1)
那么称A是可逆矩阵(或非奇异矩阵)。

2、定义2:如果A是可逆矩阵,那么适合(1)式的矩阵B称为A的逆矩阵,记作 A − 1 A^{-1} A1 A − 1 A^{-1} A1是唯一的。

3、定理1:数域K上n级矩阵A可逆的充分必要条件是 ∣ A ∣ ≠ 0 |A|\not=0 A=0。当A可逆时,
A − 1 = 1 ∣ A ∣ A ∗ . (2) A^{-1}=\frac 1 {|A|} A^*. \tag{2} A1=A1A.(2)
A ∗ A^{*} A为A的伴随矩阵。满足 A A ∗ = A ∗ A = ∣ A ∣ I AA^{*}=A^{*}A=|A|I AA=AA=AI

数域K上n级矩阵A可逆的充分必要条件汇总:
数 域 K 上 n 级 矩 阵 A 可 逆    ⟺    ∣ A ∣ ≠ 0    ⟺    A 为 满 秩 矩 阵    ⟺    A 的 行 ( 列 ) 向 量 组 线 性 无 关    ⟺    A 的 行 ( 列 ) 向 量 组 为 K n 的 一 个 基    ⟺    A 的 行 ( 列 ) 空 间 等 于 K n    ⟺    A 可 以 表 示 成 一 些 初 等 矩 阵 的 乘 积 。 \begin{aligned} &数域K上n级矩阵A可逆 \\ \iff&|A|\not=0\\ \iff&A为满秩矩阵\\ \iff&A的行(列)向量组线性无关 \\ \iff&A的行(列)向量组为K^{n}的一个基\\ \iff&A的行(列)空间等于K^{n}\\ \iff&A可以表示成一些初等矩阵的乘积。 \end{aligned} KnAA=0AA线AKnAKnA
命题1:设A与B都是数域K上的n级矩阵,如果 A B = I AB=I AB=I,那么A与B都是可逆矩阵,并且 A − 1 = B , B − 1 = A A^{-1}=B,B^{-1}=A A1=B,B1=A

4、可逆矩阵的性质:
性 质 1 : 单 位 矩 阵 I 可 逆 , 且 I − 1 = I 。 性 质 2 : 如 果 A 可 逆 , 那 么 A − 1 也 可 逆 , 且 ( A − 1 ) − 1 = A 。 性 质 3 : 如 果 n 级 矩 阵 A 、 B 都 可 逆 , 那 么 A B 也 可 逆 , 并 且 ( A B ) − 1 = B − 1 A − 1 。 推 广 : ( A 1 A 2 … A s ) − 1 = A s − 1 … A 2 − 1 A 1 − 1 。 性 质 4 : 如 果 A 可 逆 , 那 么 A ′ 也 可 逆 , 并 且 ( A ′ ) − 1 = ( A − 1 ) ′ 。 性 质 5 : 可 逆 矩 阵 经 过 初 等 行 变 换 化 成 的 简 化 行 阶 梯 形 矩 阵 一 定 是 单 位 矩 阵 。 性 质 6 : 矩 阵 A 可 逆 的 充 分 必 要 条 件 是 它 可 以 表 示 成 一 些 初 等 矩 阵 的 乘 积 。 性 质 7 : 用 一 个 可 逆 矩 阵 左 ( 右 ) 乘 一 个 矩 阵 A , 不 改 变 A 的 秩 。 \begin{aligned} &性质1:单位矩阵I可逆,且I^{-1}=I。\\ &性质2:如果A可逆,那么A^{-1}也可逆,且(A^{-1})^{-1}=A。\\ &性质3:如果n级矩阵A、B都可逆,那么AB也可逆,并且(AB)^{-1}=B^{-1}A^{-1}。推广:(A_1A_2\dots A_s)^{-1}=A_s^{-1}\dots A_2^{-1}A_1^{-1}。\\ &性质4:如果A可逆,那么A'也可逆,并且(A')^{-1}=(A^{-1})'。\\ &性质5:可逆矩阵经过初等行变换化成的简化行阶梯形矩阵一定是单位矩阵。\\ &性质6:矩阵A可逆的充分必要条件是它可以表示成一些初等矩阵的乘积。\\ &性质7:用一个可逆矩阵左(右)乘一个矩阵A,不改变A的秩。 \end{aligned} 1II1=I2AA1(A1)1=A3nABAB(AB)1=B1A1广(A1A2As)1=As1A21A114AA(A)1=(A1)56A7AA

5、初等变换法求逆矩阵:
( A , I ) → 初等行变换 ( I , A − 1 ) (A,I)\xrightarrow{\text{初等行变换}}(I,A^{-1}) (A,I)初等行变换 (I,A1)

4.5 矩阵的分块

1、对于分块矩阵 A = [ A 1 A 2 A 3 A 4 ] , A ′ = [ A 1 ′ A 3 ′ A 2 ′ A 4 ′ ] A=\begin{bmatrix}A_1&A_2\\A_3&A_4 \end{bmatrix},A'=\begin{bmatrix}A_1'&A_3'\\A_2'&A_4' \end{bmatrix} A=[A1A3A2A4],A=[A1A2A3A4]

2、分块矩阵相乘需满足下列条件:
( 1 ) 左 矩 阵 的 列 组 数 等 于 右 矩 阵 的 行 组 数 ; ( 2 ) 左 矩 阵 每 个 列 组 所 含 列 数 等 于 右 矩 阵 相 应 行 组 所 含 行 数 。 \begin{aligned} &(1)左矩阵的列组数等于右矩阵的行组数;\\ &(2)左矩阵每个列组所含列数等于右矩阵相应行组所含行数。 \end{aligned} (1)(2)
3、命题1: 设 A 是 s × n 矩 阵 , B 是 n × m 矩 阵 , B 的 列 向 量 组 为 β 1 , β 2 , … , β m 。 则 设A是s \times n矩阵,B是n \times m矩阵,B的列向量组为\beta_1,\beta_2,\dots,\beta_m。则 As×nBn×mBβ1,β2,,βm
A B = A ( β 1 , β 2 , … , β m ) = ( A β 1 , A β 2 , … , A β m ) . AB=A(\beta_1,\beta_2,\dots,\beta_m)=(A\beta_1,A\beta_2,\dots,A\beta_m). AB=A(β1,β2,,βm)=(Aβ1,Aβ2,,Aβm).
推论1: 设 A s × n ≠ 0 , B n × m 的 列 向 量 组 是 β 1 , β 2 , … , β m 。 则 设A_{s \times n}\not=0,B_{n \times m}的列向量组是\beta_1,\beta_2,\dots,\beta_m。则 As×n=0,Bn×mβ1,β2,,βm
A B = 0    ⟺    β 1 , β 2 , … , β m 都 是 齐 次 线 性 方 程 组 A X = 0 的 解 。 AB=\bold 0\iff\beta_1,\beta_2,\dots,\beta_m 都是齐次线性方程组AX=\bold 0的解。 AB=0β1,β2,,βm线AX=0
推论2: 设 A s × n ≠ 0 , B n × m 的 列 向 量 组 是 β 1 , β 2 , … , β m ; C s × m 的 列 向 量 组 是 δ 1 , δ 2 , … , δ m 。 则 设A_{s \times n}\not=0,B_{n \times m}的列向量组是\beta_1,\beta_2,\dots,\beta_m;C_{s \times m}的列向量组是\delta_1,\delta_2,\dots,\delta_m。则 As×n=0,Bn×mβ1,β2,,βm;Cs×mδ1,δ2,,δm
A B = C    ⟺    β i 是 线 性 方 程 组 A X = δ i 的 一 个 解 , i = 1 , 2 , … , m . AB=C\iff\beta_i是线性方程组AX=\delta_i的一个解,i=1,2,\dots,m. AB=Cβi线AX=δii=1,2,,m.
4、分块矩阵的初等行变换:
( 1 ) 把 一 个 块 行 的 左 P 倍 ( P 是 矩 阵 ) 加 到 另 一 个 块 行 上 , 如 [ A 1 A 2 A 3 A 4 ] → ( 2 ) + P ⋅ ( 1 ) [ A 1 A 2 P A 1 + A 3 P A 2 + A 4 ] ; ( 2 ) 互 换 两 个 块 行 的 位 置 ; ( 3 ) 用 一 个 可 逆 矩 阵 左 乘 某 一 块 行 ( 为 的 是 可 以 把 所 得 到 的 分 块 矩 阵 变 回 原 来 的 分 块 矩 阵 ) 。 \begin{aligned} &(1)把一个块行的左P倍(P是矩阵)加到另一个块行上,如\\ &\qquad \begin{bmatrix}A_1&A_2\\A_3&A_4 \end{bmatrix}\xrightarrow{(2)+P\cdot (1)} \begin{bmatrix}A_1&A_2\\PA_1+A_3&PA_2+A_4 \end{bmatrix};\\ &(2)互换两个块行的位置;\\ &(3)用一个可逆矩阵左乘某一块行(为的是可以把所得到的分块矩阵变回原来的分块矩阵)。 \end{aligned} (1)PP[A1A3A2A4](2)+P(1) [A1PA1+A3A2PA2+A4];(2)(3)
类似的有分块矩阵的初等列变换。

把单位矩阵分块,并经过一次分块矩阵的初等行(列)变换得到的矩阵称为分块初等矩阵

5、分块对角矩阵: d i a g { A 1 , A 2 , … , A s } , 其 中 A i 是 方 阵 , i = 1 , 2 , … , s . diag\{A_1,A_2,\dots,A_s\},其中A_i是方阵,i=1,2,\dots,s. diag{A1,A2,,As},Ai,i=1,2,,s.

6、分块上(下)三角矩阵:主对角线上子矩阵都是方阵,而位于主对角线上(下)方的所有矩阵都为0。

性质: ∣ A 0 C B ∣ = ∣ A ∣ ∣ B ∣ . \begin{vmatrix} A&0\\C&B\end{vmatrix}=|A||B|. AC0B=AB.

7、命题2: 设 A 、 B 分 别 是 s × n 、 n × s 矩 阵 , 则 设A、B分别是s \times n、n \times s矩阵,则 ABs×nn×s
( 1 ) ∣ I n B A I s ∣ = ∣ I s − A B ∣ ; ( 2 ) ∣ I n B A I s ∣ = ∣ I n − B A ∣ ; ( 3 ) ∣ I s − A B ∣ = ∣ I n − B A ∣ . \begin{aligned} &(1)\begin{vmatrix} I_n&B\\ A&I_s\end{vmatrix}=|I_s-AB|;\\ &(2)\begin{vmatrix} I_n&B\\ A&I_s\end{vmatrix}=|I_n-BA|;\\ &(3)|I_s-AB|=|I_n-BA|. \end{aligned} (1)InABIs=IsAB;(2)InABIs=InBA;(3)IsAB=InBA.
8、命题3: 设 A = [ A 1 A 3 0 A 2 ] , 其 中 A 1 , A 2 都 是 方 阵 。 则 A 可 逆 当 且 仅 当 A 1 , A 2 都 可 逆 , 此 时 设A=\begin{bmatrix}A_1&A_3\\0&A_2 \end{bmatrix},其中A_1,A_2都是方阵。则A可逆当且仅当A_1,A_2都可逆,此时 A=[A10A3A2]A1A2AA1A2
A − 1 = [ A 1 − 1 − A 1 − 1 A 3 A 2 − 1 0 A 2 − 1 ] . A^{-1}=\begin{bmatrix}A_1^{-1}&-A_1^{-1}A_3A_2^{-1}\\0&A_2^{-1} \end{bmatrix}. A1=[A110A11A3A21A21].

4.6 正交矩阵 ⋅ \cdot 欧几里得空间 R n R^n Rn

1、定义1:实数域上的n级矩阵A如果满足: A A ′ = I AA'=I AA=I,那么称A是正交矩阵。

命题1:实数域上的n级矩阵A是正交矩阵
   ⟺    A A ′ = I    ⟺    A 可 逆 , 且 A − 1 = A ′    ⟺    A ′ A = I \begin{aligned} &\iff AA'=I\\ &\iff A可逆,且A^{-1}=A'\\ &\iff A'A=I \end{aligned} AA=IAA1=AAA=I
正交矩阵具有下列性质:
( 1 ) I 是 正 交 矩 阵 ; ( 2 ) 若 A 和 B 是 正 交 矩 阵 , 则 A B 也 是 正 交 矩 阵 ; ( 3 ) 若 A 是 正 交 矩 阵 , 则 A − 1 ( 即 A ′ ) 也 是 正 交 矩 阵 ; ( 4 ) 若 A 是 正 交 矩 阵 , 则 ∣ A ∣ = 1 或 − 1 。 \begin{aligned} &(1)I是正交矩阵;\\ &(2)若A和B是正交矩阵,则AB也是正交矩阵;\\ &(3)若A是正交矩阵,则A^{-1}(即A')也是正交矩阵;\\ &(4)若A是正交矩阵,则|A|=1或-1。 \end{aligned} (1)I(2)ABAB(3)AA1A(4)AA=11
命题2:设实数域上n级矩阵A的行向量组为 γ 1 , … , γ n \gamma_1,\dots,\gamma_n γ1,,γn;列向量组为 α 1 , … , α n \alpha_1,\dots,\alpha_n α1,,αn。则
( 1 ) A 为 正 交 矩 阵 当 且 仅 当 A 的 行 向 量 组 满 足 : γ i γ j ′ = { 1 , 当 i = j , 0 , 当 i ≠ j ; ( 1 ) A 为 正 交 矩 阵 当 且 仅 当 A 的 列 向 量 组 满 足 : α i ′ α j = { 1 , 当 i = j , 0 , 当 i ≠ j . \begin{aligned} &(1)A为正交矩阵当且仅当A的行向量组满足:\gamma_i\gamma_j'=\begin{cases}1,\qquad 当i=j,\\0,\qquad 当i\not=j;\end{cases}\\ &(1)A为正交矩阵当且仅当A的列向量组满足:\alpha_i'\alpha_j=\begin{cases}1,\qquad 当i=j,\\0,\qquad 当i\not=j.\end{cases} \end{aligned} (1)AAγiγj={1,i=j,0,i=j;(1)AAαiαj={1,i=j,0,i=j.
引用Kronecker记号 δ i j , δ i j = { 1 , 当 i = j , 0 , 当 i ≠ j . \delta_{ij},\delta_{ij}=\begin{cases}1,\qquad 当i=j,\\0,\qquad 当i\not=j.\end{cases} δij,δij={1,i=j,0,i=j.。故命题2可简记为:
( 1 ) γ i γ j ′ = δ i j , 1 ⩽ i , j ⩽ n ; ( 2 ) α i ′ α j = δ i j , 1 ⩽ i , j ⩽ n ; \begin{aligned} &(1)\gamma_i\gamma_j'=\delta_{ij},1\leqslant i,j\leqslant n; \\ &(2)\alpha_i'\alpha_j=\delta_{ij},1\leqslant i,j\leqslant n; \end{aligned} (1)γiγj=δij,1i,jn;(2)αiαj=δij,1i,jn;

2、定义2: 在 R n 中 , 任 给 α = ( a 1 , a 2 , … , a n ) , β = ( b 1 , b 2 , … , b n ) , 规 定 在R^n中,任给\alpha=(a_1,a_2,\dots,a_n),\beta=(b_1,b_2,\dots,b_n),规定 Rnα=(a1,a2,,an),β=(b1,b2,,bn)
( α , β ) = def a 1 b 1 + a 2 b 2 + ⋯ + a n b n , (1) (\alpha,\beta)\xlongequal{\text{def}}a_1b_1+a_2b_2+\dots+a_nb_n,\tag{1} (α,β)def a1b1+a2b2++anbn,(1)
这个二元实值函数 ( α , β ) 称 为 R n (\alpha,\beta)称为R^n (α,β)Rn的一个内积(通常也称为标准内积)。(1)式可写为 ( α , β ) = α β ′ (\alpha,\beta)=\alpha\beta' (α,β)=αβ.

可验证 R n R^n Rn的标准内积具有以下性质:
( 1 ) ( α , β ) = ( β , α ) , 对 称 性 ( 2 ) ( α + γ , β ) = ( α , β ) + ( γ , β ) , 线 性 性 1 ( 3 ) ( k α , β ) = k ( α , β ) , 线 性 性 2 ( 4 ) ( α , α ) ⩾ 0 , 等 号 成 立 当 且 仅 当 α = 0 。 ( 正 定 性 ) \begin{aligned} &(1)(\alpha,\beta)=(\beta,\alpha),对称性\\ &(2)(\alpha+\gamma,\beta)=(\alpha,\beta)+(\gamma,\beta),线性性1\\ &(3)(k\alpha,\beta)=k(\alpha,\beta),线性性2\\ &(4)(\alpha,\alpha)\geqslant 0,等号成立当且仅当\alpha=\bold 0。(正定性) \end{aligned} (1)(α,β)=(β,α)(2)(α+γ,β)=(α,β)+(γ,β)线1(3)(kα,β)=k(α,β)线2(4)(α,α)0α=0
定义了内积之后,n维向量空间 R n R^n Rn就被称为一个欧几里得空间

在欧几里得空间 R n R^n Rn中规定向量 α 的 长 度 : ∣ α ∣ = def ( α , α ) . \alpha 的长度:|\alpha|\xlongequal{\text{def}}\sqrt{(\alpha,\alpha)}. ααdef (α,α) .

长度为1的向量称为单位向量,把非零向量 α \alpha α乘以 1 ∣ α ∣ \frac 1 {|\alpha|} α1称为把** α \alpha α单位化**。

如果 ( α , β ) = 0 (\alpha,\beta)=0 (α,β)=0,那么称 α 与 β \alpha与\beta αβ正交的,记作 α ⊥ β \alpha \bot \beta αβ。非零向量组成的向量组如果向量两两正交,则称为正交向量组。类似可定义正交单位向量组

命题3:欧几里得空间 R n R^n Rn中,正交向量组一定是线性无关的。

根据命题3得,欧几里得空间 R n R^n Rn 中,n个向量组成的正交向量组一定是 R n R^n Rn的一个基,称它为正交基。n个单位向量组成的向量组称为标准正交基

命题4:实数域上n级矩阵A是正交矩阵的充分必要条件为:A的行(列)向量组是欧几里得空间 R n R^n Rn的一个标准正交基。

3、定理1: 设 α 1 , … , α s 是 欧 几 里 得 空 间 R n 中 一 个 线 性 无 关 的 向 量 组 , 令 设\alpha_1,\dots,\alpha_s是欧几里得空间R^n中一个线性无关的向量组,令 α1,,αsRn线
β 1 = α 1 β 2 = α 2 − ( α 2 , β 1 ) ( β 1 , β 1 ) β 1 , … β s = α s − ∑ j = 1 s − 1 ( α s , β j ) ( β j , β j ) β j , (2) \begin{aligned} &\beta_1=\alpha_1\\ &\beta_2=\alpha_2-\frac {(\alpha_2,\beta_1)} {(\beta_1,\beta_1)} \beta_1,\\ &\dots\\ &\beta_s=\alpha_s-\sum_{j=1}^{s-1} \frac {(\alpha_s,\beta_j)} {(\beta_j,\beta_j)} \beta_j, \end{aligned}\tag{2} β1=α1β2=α2(β1,β1)(α2,β1)β1,βs=αsj=1s1(βj,βj)(αs,βj)βj,(2)
则 β 1 , β 2 , … , β s 是 正 交 向 量 组 , 并 且 β 1 , β 2 , … , β s 与 α 1 , … , α s 等 价 。 则\beta_1,\beta_2,\dots,\beta_s是正交向量组,并且\beta_1,\beta_2,\dots,\beta_s与\alpha_1,\dots,\alpha_s等价。 β1,β2,,βsβ1,β2,,βsα1,,αs

定理1称为施密特(Schmidt)正交化过程。只要再进行单位化,就能得到正交单位向量组,即 R n R^n Rn的标准正交基。

4.7 从 K n 到 K s K^n到K^s KnKs的线性映射

1、定义1:设 S 和 S ′ S和S' SS是两个集合,如果存在一个对应法则 f f f,使得集合 S S S中每一个元素a,都有集合 S ′ S' S中唯一确定的元素b与之对应,那么称 f f f是集合 S S S S ′ S' S的一个映射,记作
f : S → S ′ a ↦ b , \begin{aligned} f:&S\rightarrow S'\\&a\mapsto b, \end{aligned} f:SSab,
其中,b称为a在 f f f下的,a称为b在 f f f下的一个原象。b在 f f f下的原象集记作 f − 1 ( b ) 。 f^{-1}(b)。 f1(b)a在 f f f下的象用符号 f ( a ) f(a) f(a) f a fa fa表示,于是映射 f f f也可以记成
f ( a ) = b , a ∈ S f(a)=b,a\in S f(a)=b,aS
2、设 f f f是集合S到集合S’的一个映射,则把S叫做映射 f f f定义域,把S’叫做 f f f陪域。S的所有元素在 f f f下的象组成的集合叫做 f f f值域或** f f f的象**,记作 f ( S ) f(S) f(S)或Im f f f。即
f ( S ) = Im f = def { f ( a )   ∣   a ∈ S } = { b ∈ S ′   ∣   存 在 a ∈ S 使 f ( a ) = b } . f(S)=\text{Im}f\xlongequal{\text{def}}\{f(a)\,|\,a\in S\}=\{b\in S'\,|\,存在a\in S使f(a)=b\}. f(S)=Imfdef {f(a)aS}={bSaS使f(a)=b}.
3、设 f f f是集合S到集合S’的一个映射,如果 f ( S ) = S ′ f(S)=S' f(S)=S,那么称 f f f满射(或 f f f是S到S’上的映射)。 f f f是满射当且仅当 f f f的陪域中每一个元素都有至少一个原象。

如果映射 f f f的定义域S中不同的元素的象也不同,那么称 f f f单射(或 f f f是一对一映射)。 f f f是单射当且仅当从 a 1 , a 2 ∈ S a_1,a_2\in S a1,a2S f ( a 1 ) = f ( a 2 ) f(a_1)=f(a_2) f(a1)=f(a2)可以推出 a 1 = a 2 。 a_1=a_2。 a1=a2

如果映射 f f f既是单射,又是满射,那么称 f f f双射(或 f f f是S到S’的一个一一对应)。 f f f是双射当且仅当陪域中每一个元素都有唯一的一个原象。

映射 f f f与映射 g g g称为相等,如果他们的定义域相等,陪域相等,并且对应法则相同。( 即 ∀ x ∈ S , 有 f ( x ) = g ( x ) 即\forall x\in S,有f(x)=g(x) xS,f(x)=g(x))。

集合S到自身的一个映射,通常称为S上的一个变换

4、定义2:映射 f : S → S f:S\rightarrow S f:SS,如果把S中每一个元素对应到它自身,即 ∀ x ∈ S , 有 f ( x ) = x \forall x\in S,有f(x)=x xS,f(x)=x,那么称 f f f恒等映射(或S上的恒等变换),记作: 1 s 1_s 1s

5、定义3:相继施行映射 g : S → S ′ 和 f : S ′ → S ′ ′ , 得 到 S 到 S ′ ′ g:S\rightarrow S'和f:S'\rightarrow S'',得到S到S'' g:SSf:SSSS的一个映射,称为 f 与 g f与g fg乘积(或合成),记作 f g fg fg。即
( f g ) ( a ) = def f ( g ( a ) ) , ∀ a ∈ S . (fg)(a)\xlongequal{\text{def}}f(g(a)),\forall a\in S. (fg)(a)def f(g(a)),aS.
定理1:映射的乘法适合结合律。即如果 h : S → S ′ , g : S ′ → S ′ ′ , f : S ′ ′ → S ′ ′ ′ h:S\rightarrow S',g:S'\rightarrow S'',f:S''\rightarrow S''' h:SS,g:SS,f:SS,那么 f ( g h ) = ( f g ) h . f(gh)=(fg)h. f(gh)=(fg)h.

注意映射的乘法不适合交换律,但对于 f : S → S ′ , 有 f 1 s = 1 s f = f . f:S\rightarrow S',有f1_s=1_sf=f. f:SS,f1s=1sf=f.

6、定义4:设 f : S → S ′ f:S\rightarrow S' f:SS,如果存在一个映射 g : S ′ → S 使 得 f g = g f = 1 s g:S'\rightarrow S使得fg=gf=1_s g:SS使fg=gf=1s,那么称映射 f f f是可逆的,此时称 g 是 f g是f gf的一个逆映射

定理2:映射 f : S → S ′ f:S\rightarrow S' f:SS是可逆的充分必要条件为 f f f是双射。

7、定义5:数域K上的向量空间 K n 到 K s K^n 到K^s KnKs的一个映射 σ \sigma σ如果保持加法和数量乘法,即 ∀ α , β ∈ K n , k ∈ K \forall \alpha,\beta \in K^n,k\in K α,βKn,kK,有
σ ( α + β ) = σ ( α ) + σ ( β ) , σ ( k α ) = k σ ( α ) , \begin{aligned} \sigma(\alpha+\beta)&=\sigma(\alpha)+\sigma(\beta),\\ \sigma(k\alpha)&=k\sigma(\alpha), \end{aligned} σ(α+β)σ(kα)=σ(α)+σ(β),=kσ(α),
那么称 σ 是 K n 到 K s \sigma是K^n 到K^s σKnKs的一个线性映射

设A是数域K上 s × n s \times n s×n矩阵,令
A : K n → K s α ↦ A α , (1) \begin{aligned} A:&K^n\rightarrow K^s\\&\alpha\mapsto A\alpha, \end{aligned}\tag{1} A:KnKsαAα,(1)
则容易验证A是 σ 是 K n 到 K s \sigma是K^n 到K^s σKnKs的一个线性映射。

事实1:数域K上n元线性方程组 A X = β AX=\beta AX=β有解
   ⟺    存 在 γ ∈ K n , 使 得 A γ = β    ⟺    存 在 γ ∈ K n , 使 得 A ( γ ) = β    ⟺    β ∈ Im A . \begin{aligned} \iff&存在\gamma \in K^n,使得A\gamma=\beta\\ \iff&存在\gamma \in K^n,使得A(\gamma)=\beta\\ \iff&\beta \in \text{Im}A. \end{aligned} γKn,使Aγ=βγKn,使A(γ)=ββImA.
事实2:设数域K上 s × n s \times n s×n矩阵A的列向量组是 α 1 , … , α n \alpha_1,\dots,\alpha_n α1,,αn,则
β ∈ Im A    ⟺    线 性 方 程 组 A X = β 有 解    ⟺    β ∈ < α 1 , … , α n > . \begin{aligned} &\beta\in \text{Im}A\\ \iff&线性方程组AX=\beta有解\\ \iff&\beta \in <\alpha_1,\dots,\alpha_n>. \end{aligned} βImA线AX=ββ<α1,,αn>.
因此 Im A = < α 1 , … , α n > \qquad \text{Im}A=<\alpha_1,\dots,\alpha_n> ImA=<α1,,αn>

即,由(1)式定义的映射A的象(值域)等于矩阵A的列空间,从而Im A A A K s K^s Ks的一个子空间。

事实3:设数域K上齐次线性方程组 A X = 0 AX=\bold 0 AX=0的解空间是W,则
η ∈ W    ⟺    A η = 0    ⟺    A ( η ) = 0. \eta \in W \iff A\eta=\bold 0 \iff A(\eta)=\bold 0. ηWAη=0A(η)=0.
8、定义6:设 σ 是 K n 到 K s \sigma 是K^n到K^s σKnKs的一个映射, K n K^n Kn的一个子集 { α ∈ K n ∣ σ ( α ) = 0 } \{\alpha \in K^n|\sigma(\alpha)=\bold 0\} {αKnσ(α)=0}称为 σ \sigma σ,记作:Ker σ \sigma σ

容易验证Ker σ \sigma σ K n K^n Kn的一个子空间。

由(1)式定义的线性映射A的核等于齐次线性方程组 A X = 0 AX=\bold 0 AX=0的解空间。即:Ker σ = W \sigma=W σ=W

综上,有:
d i m   Ker   A + d i m   Im   A = d i m   K n . dim \,\text{Ker}\,A+dim\,\text{Im}\,A=dim\,K^n. dimKerA+dimImA=dimKn.

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

南村少年

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值