高等代数:6 二次型⋅矩阵的合同

6 二次型 ⋅ \cdot 矩阵的合同

6.1 二次型及其标准形

1、定义1:数域K上一个n元二次型是系数在K中的n个变量的二次齐次多项式,它的一般形式是
f ( x 1 , x 2 , … , x n ) = a 11 x 1 2 + 2 a 12 x 1 x 2 + 2 a 13 x 1 x 3 + ⋯ + 2 a 1 n x 1 x n + a 22 x 2 2 + 2 a 23 x 2 x 3 + ⋯ + 2 a 2 n x 2 x n + ⋯ ⋯ ⋯ + a n n x n 2 (1) \begin{aligned} &f(x_1,x_2,\dots,x_n)=&a_{11}x_1^2+2a_{12}x_1x_2+2a_{13}x_1x_3+\cdots+2a_{1n}x_1x_n&\\ &&+a_{22}x_2^2+2a_{23}x_2x_3+\cdots+2a_{2n}x_2x_n&\\ &&+\cdots\qquad\cdots\qquad\cdots\qquad&\\ &&+a_{nn}x_n^2 \end{aligned}\tag{1} f(x1,x2,,xn)=a11x12+2a12x1x2+2a13x1x3++2a1nx1xn+a22x22+2a23x2x3++2a2nx2xn++annxn2(1)
(1)式也可以写成
f ( x 1 , x 2 , … , x n ) = ∑ i = 1 n ∑ j = 1 n a i j x i x j , (2) f(x_1,x_2,\dots,x_n)=\sum_{i=1}^n\sum_{j=1}^na_{ij}x_ix_j,\tag{2} f(x1,x2,,xn)=i=1nj=1naijxixj,(2)
其中 a i j = a j i , 1 ⩽ i , j ⩽ n a_{ij}=a_{ji},1\leqslant i,j\leqslant n aij=aji,1i,jn。把(2)式中的系数按原来顺序排成一个n级矩阵A:
A = [ a 11 a 12 a 13 ⋯ a 1 n a 21 a 22 a 23 ⋯ a 2 n ⋮ ⋮ ⋮ ⋮ a n 1 a n 2 a n 3 ⋯ a n n ] , (3) A=\begin{bmatrix} a_{11}&a_{12}&a_{13}&\cdots&a_{1n}\\ a_{21}&a_{22}&a_{23}&\cdots&a_{2n}\\ \vdots&\vdots&\vdots&&\vdots\\ a_{n1}&a_{n2}&a_{n3}&\cdots&a_{nn} \end{bmatrix},\tag{3} A=a11a21an1a12a22an2a13a23an3a1na2nann,(3)
则称A是二次型 f ( x 1 , x 2 , … , x n ) f(x_1,x_2,\dots,x_n) f(x1,x2,,xn)的矩阵,它是对称矩阵。显然二次型 f ( x 1 , x 2 , … , x n ) f(x_1,x_2,\dots,x_n) f(x1,x2,,xn)的矩阵是唯一的。令
X = [ x 1 x 2 ⋮ x n ] , (4) X=\begin{bmatrix}x_1\\x_2\\\vdots\\x_n \end{bmatrix},\tag{4} X=x1x2xn,(4)
则二次型(1)可写成
f ( x 1 , x 2 , … , x n ) = X ′ A X , (5) f(x_1,x_2,\dots,x_n)=X'AX,\tag{5} f(x1,x2,,xn)=XAX,(5)
其中A是二次型 f ( x 1 , x 2 , … , x n ) f(x_1,x_2,\dots,x_n) f(x1,x2,,xn)的矩阵。

Y = ( y 1 , y 2 , ⋯   , y n ) ′ Y=(y_1,y_2,\cdots,y_n)' Y=(y1,y2,,yn),设C是数域K上的n级可逆矩阵,则关系式
X = C Y (6) X=CY\tag{6} X=CY(6)
称为变量 x 1 , x 2 , … , x n x_1,x_2,\dots,x_n x1,x2,,xn到变量 y 1 , y 2 , ⋯   , y n y_1,y_2,\cdots,y_n y1,y2,,yn的一个非退化线性变换

2、定义2:数域K上两个n元二次型 X ′ A X 与 Y ′ B Y X'AX与Y'BY XAXYBY,如果存在一个非退化线性变换 X = C Y X=CY X=CY,把 X ′ A X 变 成 Y ′ B Y X'AX变成Y'BY XAXYBY,那么称二次型 X ′ A X 与 Y ′ B Y X'AX与Y'BY XAXYBY等价,记作: X ′ A X ≅ Y ′ B Y X'AX\cong Y'BY XAXYBY

3、定义3:数域K上两个n级矩阵A与B,如果存在K上一个n级可逆矩阵C,使得
C ′ A C = B , (7) C'AC=B,\tag{7} CAC=B,(7)
那么称A与B合同,记作: A ⋍ B A\backsimeq B AB

4、命题1:数域K上两个n元二次型 X ′ A X 与 Y ′ B Y X'AX与Y'BY XAXYBY等价当且仅当n级对称矩阵A与B合同。

5、合同关系下,A的等价类称为A的合同类

6、如果二次型 X ′ A X X'AX XAX等价于一个只含平方项的二次型,那么这个只含平方项的二次型称为 X ′ A X X'AX XAX的一个标准形

7、如果对称矩阵A合同于一个对角矩阵,那么这个对角矩阵称为A的一个合同标准形

8、命题2:实数域上n元二次型 X ′ A X X'AX XAX有一个标准形为
λ 1 y 1 2 + λ 2 y 2 2 + ⋯ + λ n y n 2 , (8) \lambda_1y_1^2+\lambda_2y_2^2+\cdots+\lambda_ny_n^2,\tag{8} λ1y12+λ2y22++λnyn2,(8)

其中 λ 1 , λ 2 , ⋯   , λ n \lambda_1,\lambda_2,\cdots,\lambda_n λ1,λ2,,λn是A的全部特征值。

9、如果T是正交矩阵,那么变量的替换 X = T X X=TX X=TX称为正交替换

10、引理1:设A、B都是数域K上n级矩阵,则A合同于B当且仅当A经过一系类成对初等行、列变换可以变成B,此时对 I I I只作其中的初等列变换得到的可逆矩阵C,就使得 C ′ A C = B C'AC=B CAC=B

定理1:数域K上任一对称矩阵都合同于一个对角矩阵。

11、定理2:数域K上任一n元二次型都等价于一个只含平方项的二次型。

命题3:数域K上n元二次型 X ′ A X X'AX XAX的任一标准形中,系数不为0的平方项个数等于它的矩阵A的秩,这个秩也称为二次型 X ′ A X X'AX XAX的秩

6.2 实二次型的规范型

n元二次型 X ′ A X X'AX XAX经过一个适当的非退化线性替换 X = C Y X=CY X=CY可以化成下述形式的标准形:
d 1 y 1 2 + ⋯ + d p y p 2 − d p + 1 y p + 1 2 − ⋯ − d r y r 2 , (1) d_1y_1^2+\cdots+d_py_p^2-d_{p+1}y_{p+1}^2-\cdots-d_ry_r^2,\tag{1} d1y12++dpyp2dp+1yp+12dryr2,(1)
其中 d i > 0 , i = 1 , 2 , ⋯   , r d_i>0,i=1,2,\cdots,r di>0,i=1,2,,r。易知这个二次型的秩为r。再作一个非退化线性替换:
y i = 1 d i z i , i = 1 , 2 , ⋯   , r . y j = z j , j = r + 1 , ⋯   , n . (2) \begin{aligned} y_i&=\frac 1 {\sqrt{d_i}}z_i,\qquad i=1,2,\cdots,r.\\ y_j&=z_j,\qquad j=r+1,\cdots,n. \end{aligned}\tag{2} yiyj=di 1zi,i=1,2,,r.=zj,j=r+1,,n.(2)
则二次型(1)可变成
z 1 2 + ⋯ + z p 2 − z p + 1 2 − ⋯ − z r 2 . (3) z_1^2+\cdots+z_p^2-z_{p+1}^2-\cdots-z_r^2.\tag{3} z12++zp2zp+12zr2.(3)
因此二次型 X ′ A X X'AX XAX有形如(2)式的一个标准形,称它为二次型 X ′ A X X'AX XAX规范形,它的特征是:只含平方项,且平方项的系数为1.-1或0;系数为1的平方项都在前面。实二次型 X ′ A X X'AX XAX的规范形(2)被两个自然数p和r决定。

X ′ A X X'AX XAX为复二次型,由于复数域负数可开根号,在经过形如(2)式的非线性退化过程可消去每项的正负性,从而得到下述形式标准形:
z 1 2 + z 2 2 + ⋯ + z r 2 . (4) z_1^2+z_2^2+\cdots+z_r^2.\tag{4} z12+z22++zr2.(4)
把这个标准形叫做复二次型 X ′ A X X'AX XAX的规范形。它的特征是:只含平方项,且平方项的系数为1或0.显然,复二次型 X ′ A X X'AX XAX的规范形完全由它的秩决定。

1、定理1(惯性定理):n元实二次型 X ′ A X X'AX XAX的规范形是唯一的。

2、定义1:在实二次型 X ′ A X X'AX XAX的规范形中,系数为+1的平方项个数为p称为 X ′ A X X'AX XAX正惯性指数,系数为-1的平方项个数r-1称为 X ′ A X X'AX XAX负惯性指数;正惯性指数减去负惯性指数所得的差2p-r称为 X ′ A X X'AX XAX符号差

命题1:两个n元实二次型等价
   ⟺    它 们 的 规 范 形 相 同    ⟺    它 们 的 秩 相 等 , 并 且 正 惯 性 指 数 也 相 等 。 \begin{aligned} \iff&它们的规范形相同\\ \iff&它们的秩相等,并且正惯性指数也相等。 \end{aligned}
推论1:任一n级实对称矩阵A合同于对角矩阵 d i a g { 1 , ⋯   , 1 , − 1 , ⋯   , − 1 , 0 , ⋯   , 0 } diag\{1,\cdots,1,-1,\cdots,-1,0,\cdots,0\} diag{1,,1,1,,1,0,,0},其中1的个数等于 X ′ A X X'AX XAX的正惯性指数,-1的个数等于 X ′ A X X'AX XAX的负惯性指数(分别把它们称为A的正惯性指数和负惯性指数),这个对角矩阵称为A的合同规范形

推论2:两个n级实对称矩阵合同等价于:它们的秩相等,并且正惯性指数也相等。秩和正惯性指数是合同关系下的一组完全不变量。

3、定理2:复二次型 X ′ A X X'AX XAX的规范形是唯一的。

命题2:两个n元复二次型等价
   ⟺    它 们 的 规 范 形 相 同    ⟺    它 们 的 秩 相 等 。 \begin{aligned} \iff&它们的规范形相同\\ \iff&它们的秩相等。 \end{aligned}

推论3:任一n级复对称矩阵A合同于对角阵:
( I r 0 0 0 ) , \begin{pmatrix}I_r&0\\0&0 \end{pmatrix}, (Ir000),
其中r=rank(A)。

推论4:两个n级复对称矩阵合同等价于:它们的秩相等。

6.3 正定二次型与正定矩阵

1、定义1:实二次型 X ′ A X X'AX XAX称为正定的,如果对于 R n R^n Rn中任意非零列向量 α \alpha α,都有 α ′ A α > 0 \alpha 'A\alpha>0 αAα>0

2、定理1:n元实二次型 X ′ A X X'AX XAX是正定的当且仅当它的正惯性指数等于n。

推论1:n元实二次型 X ′ A X X'AX XAX​是正定的
   ⟺    它 的 规 范 形 为 : y 1 2 + y 2 2 + ⋯ + y n 2    ⟺    它 的 标 准 形 中 n 个 系 数 全 大 于 0 \begin{aligned} \iff&它的规范形为:y_1^2+y_2^2+\cdots+y_n^2\\ \iff&它的标准形中n个系数全大于0 \end{aligned} y12+y22++yn2n0
3、定义2:实对称矩阵A称为正定的,如果实二次型 X ′ A X X'AX XAX是正定的。即对于 R n R^n Rn中任意非零列向量 α \alpha α,有 α ′ A α > 0 \alpha 'A\alpha>0 αAα>0

4、定理2:n级实对称矩阵A是正定的
   ⟺    A 的 正 惯 性 指 数 等 于 n    ⟺    A ⋍ I    ⟺    A 的 合 同 标 准 形 中 主 对 角 元 全 大 于 0    ⟺    A 的 特 征 值 全 大 于 0 \begin{aligned} \iff&A的正惯性指数等于n\\ \iff&A\backsimeq I\\ \iff&A的合同标准形中主对角元全大于0\\ \iff&A的特征值全大于0 \end{aligned} AnAIA0A0
推论2:与正定矩阵合同的实对称矩阵也是正定矩阵。

推论3:与正定二次型等价的实二次型也是正定的,从而非退化线性替换不改变实二次型的正定性。

推论4:正定矩阵的行列式大于0.

5、定理3:实对称矩阵A是正定的充分必要条件是:A的所有顺序主子式全大于0。

推论5:实二次型 X ′ A X X'AX XAX是正定的充分必要条件是:A的所有顺序主子式全大于0。

6、定义3:n元实二次型 X ′ A X X'AX XAX称为是半正定(负定,半负定)的,如果对于 R n R^n Rn中任意非零列向量 α \alpha α,有
α ′ A α ⩾ 0 ( α ′ A α < 0 , α ′ A α ⩽ 0 ) \alpha 'A\alpha\geqslant0(\alpha 'A\alpha<0,\alpha 'A\alpha\leqslant0) αAα0(αAα<0,αAα0)
如果 X ′ A X X'AX XAX既不是半正定的,又不是半负定的,那么称它是
不定的

定义4:实对称矩阵A称为**半正定(负定,半负定,不定)的,如果实二次型 X ′ A X X'AX XAX半正定(负定,半负定,不定)**的。

7、定理4:
( 1 ) n 元 实 二 次 型 X ′ A X 是 半 正 定 的    ⟺    ( 2 ) 它 的 正 惯 性 指 数 等 于 它 的 秩    ⟺    ( 3 ) 它 的 规 范 形 是 y 1 2 + y 2 2 + ⋯ + y n 2 ( 0 ⩽ r ⩽ n )    ⟺    ( 4 ) 它 的 标 准 形 中 n 个 系 数 全 非 负 。 \begin{aligned} &(1)n元实二次型X'AX是半正定的\\ \iff &(2)它的正惯性指数等于它的秩\\ \iff&(3)它的规范形是y_1^2+y_2^2+\cdots+y_n^2(0\leqslant r\leqslant n)\\ \iff&(4)它的标准形中n个系数全非负。 \end{aligned} (1)nXAX(2)(3)y12+y22++yn2(0rn)(4)n
推论6:
实 对 称 矩 阵 A 是 半 正 定 的    ⟺    A ⋍ ( I r 0 0 0 ) , 其 中 r = r a n k ( A )    ⟺    A 的 合 同 标 准 形 中 n 个 系 数 全 非 负    ⟺    A 的 特 征 值 全 非 负 。 \begin{aligned} &实对称矩阵A是半正定的\\ \iff&A\backsimeq \begin{pmatrix}I_r&0\\0&0\end{pmatrix},其中r=rank(A)\\ \iff&A的合同标准形中n个系数全非负\\ \iff&A的特征值全非负。 \end{aligned} AA(Ir000)r=rank(A)AnA
8、定理5:实对称矩阵A是半正定的当且仅当A的所有主子式全非负。

9、定理6:实对称矩阵A负定的充分必要条件是:它的奇数阶顺序主子式全小于0,偶数阶顺序主子式全大于0。

10、何塞矩阵(略)。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

南村少年

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值