多传感器融合及其应用

后续会更新部分算法详细内容

多传感器融合及其应用

1.引言

现代雷达信息处理技术

现代雷达信息处理技术分为三个层次:雷达信号处理与目标检测、但不雷达数据处理和多部雷达系统数据融合。有时也分别称为雷达信息一次处理、雷达信息二次处理和雷达信息三次处理。

1.雷达信号处理和目标检测

雷达信息一次处理的作用是在杂波、噪声和各种有源或无源干扰的背景中,提取有用信息,即提升信号,抑制杂波,噪声和干扰,提高信噪比,比较高的概率发现目标。

总会有一部分早搏和干扰信号楼过去,称为杂波剩余

2.单雷达数据处理

处理单元的输入时前端送来的点迹,点迹是数据处理的对象。

对一次处理给出的点迹与数据库中的航迹进行关联,然后进行外推、滤波等处理。以对给出的点迹进行估计并形成航迹,这一过程我们称之为跟踪

数据处理时所用到的滤波技术包括: α − β \alpha - \beta αβ 滤波器、自适应 α − β \alpha - \beta αβ 滤波器、 α − β − γ \alpha-\beta -\gamma αβγ 滤波器、卡尔曼滤波器、扩展卡尔曼滤波器、自适应卡尔曼滤波器、多模型滤波器等。

利用的是同一部雷达、不同的扫描周期、不同距离单元的信息。二次处理的功能是在一次处理的基础上,实现对多目标的滤波、跟踪,对目标的运动参数和特征参数估计。

3.多雷达数据融合

信息处理中心接收各部雷达送来的点迹或航迹,对它们继续进行数据处理。称为多雷达数据处理或多传感器融合。

每部雷达送来的数据,称为局部航迹,融合之后形成的航迹称为全局航迹或系统航迹。融合又分为点迹融合和航迹融合。集中式网络采用点迹融合,分布式结构采用航迹融合。点迹融合性能高,但处理量大。

它是二次处理的扩展和延伸。

数据融合的定义
  1. 对多个层次上的对多源信息进行处理,每个层次代表的信息处理的不同级别;
  2. 数据融合的过程:检测,关联,跟踪,估计和综合;
  3. 数据融合过程的结果包括低层次上的状态估计和属性估计,以及高层次上的战场态势和威胁评估;
数据融合的通用模型

分为四个级别处理。

第一级处理包括数据和图像的的配准、关联、跟踪和识别。

第二级处理包括态势提取、态势分析和态势预测,统称为态势评估。

第三级处理威胁评估,包括综合环境判断、威胁等级判断及辅助决策。

第四级处理优化融合处理,包括优化利用资源、优化传感器管理和优化武器控制。

传感器的组成

多传感器融合系统的输入包括三个基本分量:

  1. 传感器的观测数据;
  2. 操纵员或用户输入的数据或命令;
  3. 来自数据库的先验数据;

从功能上看,传感器主要分为七个单元:能量发射单元、能量接收单元、传感器引导与控制单元、信号调节单元、信号处理单元、数据处理单元和信息输出单元。

传感器的特征描述

每个传感器都有一组描述它的特征参数:探测性能、空间和时间的分辨率、空间覆盖范围、探测与跟踪模式、目标复现率、测量精度、测量维数、硬/软数据报告、检测与航迹报告等。

传感器管理

空间管理、工作方式管理、时间管理、频谱管理、传感器的选择与优化布站、传感器对目标的指示与交接等。

数据融合的分类

像素级、特征级、决策级融合

数据关联的方法

最邻近数据关联(NNDA)

落在关联门之内并且与被跟踪目标的预测位置“最邻近”的观测点迹作为关联点迹。

最邻近,在统计意义上离被跟踪目标的预测位置最近。

概率数据关联(PDA)

只要是有效回波,就都有可能源于目标,只是每个回波源于目标的概率有所不同。

概率数据关联滤波器(PDAF):概率数据关联和卡尔曼滤波结合

联合概率数据关联(JPDA)

目前公认的在杂波环境中对多目标进行跟踪的最理想的方法之一,但是他的计算开销大。

当且仅当落到某目标关联区内,他才被认为是有效回拨,都则拒绝。在进行观测目标和有效回波形成一个“联合分布的矩阵”。(与PDA不同的地方标红)

联合概率数据关联滤波器(JPDAF):联合概率数据关联和卡尔曼滤波结合

交互多模型法(IMM)

在计算出各模型为正确的后验概率后,通过对各模型正确时的状态估计加权求和来给出最终的目标估计,加权因子为模型正确时的后验概率

全局最邻近数据关联(JVC)

变量C来表示每个点迹与航迹之间的概率距离,即不相关的概率,反映了系统的状态估计没有落入关联门的概率。求 min ⁡ { ∑ i = 1 n ∑ j = 1 m C i j x i j } \min\{ \sum_{i=1}^n \sum_{j=1}^m C_{ij}x_{ij}\} min{i=1nj=1mCijxij}

简易联合概率数据关联(CJPDA)

写出了航迹 i 与点迹 j 之间的关联概率。

模糊数据关联(FDA)

利用隶属度,进行观测点迹分配给航迹。

准最佳联合概率数据关联(SJPDA)
最邻近联合概率数据关联(NNJPDA)
“全邻”最优滤波法
多假设法(MHT)
航迹分裂法
最大似然数据关联(MLDA)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值