功能:
1.获取摄像头,实时显示
2.鼠标获取第一帧中的目标roi区域
3.在视频中实时对目标进行追踪。
4.两种目标追踪的方式:‘meanshift’,‘camshift’
5.保存视频
import cv2 as cv
import numpy as np
global min_y,height,min_x,width
# 1代表打开外置摄像头,外置多个摄像头可依此枚举 0,1,
# 0代表电脑内置摄像头,
camera = cv.VideoCapture(0)
# 设置摄像头分辨率 1920 *1080
width = 1920
heigth = 1080
camera.set(cv.CAP_PROP_FRAME_WIDTH, width)
camera.set(cv.CAP_PROP_FRAME_HEIGHT, heigth)
# 选择目标追踪方式:
# 'meanshift':roi窗口固定不变
# 'camshift':roi窗口根据目标大小变化
TargetTrackingMode='meanshift' # 或者
# 创建保存视频的对象,设置编码格式,帧率,图片高宽等
out = cv.VideoWriter('outpy.avi',
cv.VideoWriter_fourcc('M','J','P','G'),
10,
(width,heigth))
# 获取第一帧
# ret为是否成功打开摄像头,true,false。
# frame为视频的每一帧图像
ret, frame = camera.read()
'''
利用鼠标移动截取感兴趣区域ROI:
OpenCV-python自带 API 可直接选择矩形区域作为ROI,
该API位于目标追踪模块,
主要是cv2.selectROI()函数
windowName:选择的区域被命名
showCrosshair:是否在矩形框里画十字线.
fromCenter:是否是从矩形框的中心开始画
'''
roi = cv.selectROI(windowName='roi', img=frame, showCrosshair=False, fromCenter=False)
min_x, min_y, width, height = roi
# 销毁第一帧显示窗口
cv.destroyAllWindows()
# 设计目标位置(行,高,列,宽)
track_window=(min_x,min_y,height,width)
# 计算ROI区域的直方图
roi = frame[min_y:min_y+height,min_x:min_x+width]
hsv_roi=cv.cvtColor(roi,cv.COLOR_BGR2HSV)
roi_hist=cv.calcHist([hsv_roi],[0],None,[255],[0.0,255.0])
cv.normalize(roi_hist,roi_hist,0,255,cv.NORM_MINMAX)
#目标追踪 设置窗口搜索终止条件,最大迭代次数,窗口中心漂移最小值
term_crit = (cv.TERM_CRITERIA_EPS|cv.TERM_CRITERIA_COUNT,10,1)
while (camera.isOpened()):
ret, frame = camera.read()
# 摄像头是和人对立的,将图像左右调换回来正常显示。
frame = cv.flip(frame, 1)
while not ret:# 如果获取失败,结束本次循环
break
# 计算直方图的反向投影
hsv = cv.cvtColor(frame,cv.COLOR_BGR2HSV)
dst = cv.calcBackProject([hsv],[0],roi_hist,[0,255],1)
# meanshift追踪
if TargetTrackingMode == 'meanshift':
ret, track_window = cv.meanShift(dst,track_window,term_crit)
# 将追踪的位置绘制在视频上
x,y,w,h = track_window
img_addROI = cv.rectangle(frame,(x,y),(x+w,y+h),255,2)
# camshift追踪
if TargetTrackingMode == 'camshift':
ret, track_window = cv.CamShift(dst, track_window, term_crit)
pts = cv.boxPoints(ret)
pts = np.int0(pts)
img_addROI = cv.polylines(frame,[pts],True,255,2)
# 显示图像
cv.imshow('ImgandROI',img_addROI)
#保存图像
out.write(img_addROI)
# cv.waitKey(k),其中k太小就会非常快,太大播放的就会非常慢捕获并显示一帧,按键后捕获并显示新的一帧
# cv2.waitKey(0)
# 键入q 0xFF == ord('q'),键入Esc 0xFF == 27
if cv.waitKey(25) & 0xFF == 27:
break # 结束当前循环
camera.release()
cv.destroyAllWindows()