【数据集—异常检测】全网最全公开异常检测数据集(含图例)

本文介绍

  1. 包含博主能统计到的异常检测的公开数据集
  2. 每个数据集包含:简要介绍官网网址/下载链接示例图

TIP:

  1. 如果有友友发现没有统计到的数据集,欢迎评论哦~
  2. 如果发现错误或更新网址,欢迎评论~
  3. 博主持续更新中~

首先,快速查看心意数据集【下一章节有每个数据集的详细介绍!!】

  1. 工业工件类:
    MVTec AD
    VisA
    Real-IAD
    MPDD
    ELPV
    工业缺陷检测
    CAD-SD

  2. 纺织类:
    AITEX
    Fabric dataset
    NanoTwice
    Kylberg纹理检测
    KTH-TIPS
    天池纺织品表面异常数据集
    布匹缺陷

  3. 钢材瓷砖路面类:
    KolektorSDD
    KolektorSDD2
    东北大学热轧带钢表面缺陷数据集
    steel defect detection
    steel tube dataset
    RSDD
    MTD
    天池铝型材表面缺陷
    水泥道路裂缝数据集
    桥梁裂缝图像数据
    Surface Crack Detection
    瓷砖缺陷

  4. 3D类:
    MVTec 3D-AD
    Eycandies

  5. PCB
    DeepPCB
    PKU-Market-PCB
    PCB缺陷检测
    VisA(包含PCB)
    Real-IAD(包含PCB)
    CD-PCB

  6. 木材类:
    BTAD

  7. 逻辑异常:
    MVTec LOCO-AD

  8. 纹理异常:
    DAGM
    DAGM 2007数据集
    KTH-TIPS
    水泥道路裂缝数据集
    桥梁裂缝图像数据
    AITEX
    Fabric dataset
    NanoTwice
    Kylberg纹理检测
    KTH-TIPS
    KolektorSDD
    KolektorSDD2
    东北大学热轧带钢表面缺陷数据集
    steel defect detection
    steel tube dataset
    RSDD
    MTD
    天池铝型材表面缺陷
    水泥道路裂缝数据集
    桥梁裂缝图像数据
    Surface Crack Detection
    瓷砖缺陷
    BTAD
    布匹缺陷
    天池纺织品表面异常数据集

  9. 晶圆
    WM811k
    MixedWM38

  10. 室外环境
    输电线路绝缘子数据集
    MIAD
    绝缘子自爆缺陷图像
    手扶电梯梯级

  11. 汽车相关
    Coco Car Damage Detection Dataset
    Coco Car Damage Detection Dataset 2
    Detectron2 Car Damage Detection
    car defect-defection
    Car Details’ Defects Dataset
    汽车方向盘细节缺陷

数据集介绍:

MVTec AD extended version

介绍:MVTec AD以及其扩展,共有7个数据【但不是每个都是异常检测,有需要可以看看】:
介绍网址:https://www.mvtec.com/company/research/datasets/mvtec-ad
扩展如下:
在这里插入图片描述

MVTec AD

MVTec AD应该是最出名的异常检测数据集~
标签:工业检测,真实数据
每个类别包括一组无缺陷的训练图像和一组含有各种缺陷的图像以及一组没有缺陷的图像的测试图像。还提供了所有异常的像素级精确注释。
论文:https://openaccess.thecvf.com/content_CVPR_2019/papers/Bergmann_MVTec_AD_–_A_Comprehensive_Real-World_Dataset_for_Unsupervised_Anomaly_CVPR_2019_paper.pdf
官网下载路径:https://www.mvtec.com/company/research/datasets/mvtec-ad/downloads
在这里插入图片描述
在这里插入图片描述

MVTec 3D-AD

属于MVTec AD extended version数据集
是一个全面的 3D 数据集,用于无监督异常检测和定位任务。
它包含由工业 3D 传感器获取的 4000 多个高分辨率扫描。10 个不同的对象类别中的每一个都包含一组无缺陷的训练和验证样本以及一组具有各种缺陷的样本测试集。每个异常测试样本都提供了精确的地面实况注释。
官网介绍:https://www.mvtec.com/company/research/datasets/mvtec-3d-ad
官网下载路径:https://www.mvtec.com/company/research/datasets/mvtec-ad/downloads
在这里插入图片描述

MVTec LOCO-AD

属于MVTec AD extended version数据集
用于评估无监督异常定位算法。该数据集包括结构异常和逻辑异常。
它包含 3644 张来自五个不同类别的图像,这些类别的灵感来自现实世界的工业检测场景。结构异常表现为制造产品中的划痕、凹痕或污染。逻辑异常违反了底层约束,例如,允许的对象出现在无效位置或所需对象根本不存在。该数据集还包括每个异常区域的像素精确地面真实数据。
官网下载:https://www.mvtec.com/company/research/datasets/mvtec-loco
在这里插入图片描述

MVTec Caption

MVTec Caption为MVTec AD和LOCO数据集扩展了2.2k精确的图像掩码文本注释
https://github.com/hujiecpp/MVTec-Caption

VisA

如果说MVTec AD是异常数据是TOP1,那VisA数据集绝对可以是TOP2
VisA 数据集包含 12 个子集。
共有 10,821 幅图像,其中 9,621 个正常样本和 1,200 个异常样本。
四个子集是不同类型的印刷电路板 (PCB),其结构相对复杂,包含晶体管、电容器、芯片等。
对于视图中有多个实例的情况,我们收集四个子集:Capsules、Candles、Macaroni1 和 Macaroni2。Capsules 和 Macaroni2 中的实例在位置和姿势上差异很大。
此外,我们还收集了 Cashew、Chewing gum、Fryum 和 Pipe fryum 四个子集,其中对象大致对齐。
异常图像包含各种缺陷,包括划痕、凹痕、色斑或裂纹等表面缺陷,以及错位或缺失部件等结构缺陷。
下载网址:http://github.com/amazon-research/spot-diff
在这里插入图片描述
在这里插入图片描述

Real-IAD

新出数据集中规模最大的异常检测数据集
论文:https://arxiv.org/abs/2403.12580
网址: https://huggingface.co/datasets/Real-IAD/Real-IAD
注意:1.要先注册huggingface账号,用该账号在上述网址中申请。
一个大规模的、真实世界的、多视图的工业异常检测数据集Real-IAD,它包含30个不同物体的150K高分辨率图像,比现有数据集大一个数量级。它具有更大范围的缺陷面积和比例比例,使其比以前的数据集更具挑战性。为了使数据集更接近真实应用场景,我们采用了多视角拍摄方法,并提出了样本级评价指标。此外,在一般的无监督异常检测设置之外,我们根据工业生产中良率通常大于60%的观察,提出了一种新的完全无监督工业异常检测(FUIAD)设置,更具有实际应用价值。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

AITEX

包含7种不同纺织物的245张图像。其中无缺陷的图像140张,每种类型的织物20张。
图像尺寸为4096×256像素,缺陷图像的名称如下: nnnn_ddd_ff.png,其中nnnn是图像编号,ddd是缺陷代码,ff是结构代码。
官网:https://www.aitex.es/afid/
数据分布:
在这里插入图片描述
织物02及其掩模上的缺陷19(仅显示256×256的区域)
在这里插入图片描述

BTAD

属性:木材,纹理异常
它包含三种工业产品的RGB图像。
产品1为1600 × 1600像素,产品2为600 × 600像素,产品3为800 × 600像素。
产品1、2和3分别有400张、1000张和399张图像。
对于每个异常图像,给出一个异常区域mask。
论文:https://arxiv.org/abs/2104.10036
下载路径:https://hyper.ai/datasets/19686
在这里插入图片描述

DAGM

工业光学检测(各类纹理的表面缺陷)
论文:https://hci.iwr.uni-heidelberg.de/content/weakly-supervised-learning-industrial-optical-inspection
下载网址:
【kaggle】https://www.kaggle.com/datasets/mhskjelvareid/dagm-2007-competition-dataset-optical-inspection/data
【官网】https://zenodo.org/records/12750201

数据描述:
这些数据是人工生成的,但与现实世界的问题相似。
十个数据集中的前六个数据集称为开发数据集,用于算法开发。其余四个数据集称为竞赛数据集,可用于评估性能。
每个数据集包含 1000(2000)张“无缺陷”图像和 150(300)张“有缺陷”图像,以灰度 8 位 PNG 格式保存。
每个数据集由不同的纹理模型和缺陷模型生成。
“无缺陷”图像显示没有缺陷的背景纹理,“有缺陷”图像在背景纹理上恰好有一个标记的缺陷。
所有数据集已被随机分成大小相同的训练子数据集和测试子数据集。
弱标签以椭圆形式提供,粗略地指示缺陷区域。从技术上讲,缺陷图像通过位于“标签”文件夹中的 PNG 格式的单独灰度 8 位图像进行增强。值 0 和 255 分别表示背景和缺陷区域
在这里插入图片描述
在这里插入图片描述

DeepPCB

DeepPCB数据集是一个共有PCB缺陷数据集
共包含1500组图像,每组图像,均包含无缺陷的模板图像和对齐的测试图像,并带有注释。
其中包括6种最常见的PCB缺陷类型的位置:开口,短路,咬伤,杂散,针孔和伪铜。
所有图像均来自线性扫描CCD,分辨率约为1毫米=48像素。
模板和测试图像的大小,约为16k x 16k像素,
然后将它们裁剪为很多大小为640 x 640的子图像,并通过模板匹配技术进行对齐。
论文:https://arxiv.org/abs/1902.06197
下载网址:https://www.kaggle.com/datasets/mhskjelvareid/dagm-2007-competition-dataset-optical-inspection
项目介绍:https://github.com/tangsanli5201/DeepPCB
在这里插入图片描述

在这里插入图片描述

Eycandies

类别:糖果手杖,巧克力饼干,巧克力果仁糖,五彩纸屑,小熊软糖,榛子松露,甘草三明治,棒糖,棉花糖,薄荷糖
标签:合成数据,3D
论文:https://arxiv.org/pdf/2210.04570
下载网址:https://eyecan-ai.github.io/eyecandies/download
官网:https://github.com/eyecan-ai/eyecandies
在这里插入图片描述
在这里插入图片描述

Fabric dataset

Fabric dataset由大约2000个服装和面料样本组成。
在4种不同的照明条件下,使用定制的便携式光度立体传感器捕获了每个表面的一小块。
所有图像都是在“现场”(服装店)获取的,数据集反映了现实世界中织物的分布,因此不平衡
大多数衣服都是由特定的面料制成的,比如棉花和聚酯,而其他一些面料,比如丝绸和亚麻,则比较少见。此外,大量的衣服不是由单一的织物组成,而是使用两种或两种以上的织物来赋予服装所需的性能(混纺织物)。对于每一件服装,都有来自制造商标签和类型(裤子、衬衫、裙子等)的关于其材料成分的信息(属性)。
论文:https://www.sciencedirect.com/science/article/abs/pii/S0031320315003532
下载路径:https://ibug.doc.ic.ac.uk/resources/fabrics/
在这里插入图片描述

GDXray

x射线
官网:https://www.v7labs.com/open-datasets/gdxray
在这里插入图片描述

KolektorSDD

399 张图片:

  • 52 张有明显缺陷的图像
  • 347 张无任何缺陷的图像
  • 原始图像尺寸:
    • 宽度:500像素
    • 高度:从 1240 到 1270 像素
  • 对于训练和评估,图像应调整大小为 512 x 1408 像素
    对于每件商品,缺陷仅在至少一张图像中可见,而两件商品在两张图像上都有缺陷,这意味着有 52 张图像中可见缺陷。其余 347 张图像作为表面无缺陷的反例。
    下载:https://www.vicos.si/resources/kolektorsdd/
    在这里插入图片描述

KolektorSDD2

  • 356 张有明显缺陷的图像
  • 2979 张无任何缺陷的图像
  • 图像大小约为 230 x 630 像素
  • 训练集包含 246 张正面图像和 2085 张负面图像
  • 包含 110 张正面图片和 894 张负面图片的测试集
  • 几种不同类型的缺陷(划痕、小斑点、表面缺陷等)
    下载:https://www.vicos.si/resources/kolektorsdd2/
    在这里插入图片描述
    在这里插入图片描述

MIAD

单位:商汤
视觉异常检测在维护检测中也起着至关重要的作用,以使设备保持最佳工作状态,尤其是在户外。考虑在户外不受控制的环境下进行的维护检测,例如变化的摄像机视点、杂乱的背景和长期工作后物体表面的退化。
我们专注于户外维护检查, MIAD数据集包含各种户外工业场景中的 100K 多张高分辨率彩色图像。该数据集由 3D 图形软件生成,涵盖表面和逻辑异常,具有像素精确的地面实况。
论文:https://arxiv.org/abs/2211.13968
下载:https://miad-2022.github.io/
在这里插入图片描述

MPDD

专门针对涂漆金属零件制造过程中的缺陷检测,包含6类金属零件。在不同的光强和非均匀背景下,在多个物体的不同空间方向、位置和距离条件下捕获图像。
论文:https://ieeexplore.ieee.org/document/9631567
下载:https://github.com/stepanje/MPDD
在这里插入图片描述

MTD

磁砖缺陷.正常图像中train:test=4:1,异常图像只作为test
论文:https://www.researchgate.net/profile/Congying-Qiu/publication/327701995_Saliency_defect_detection_of_magnetic_tiles/links/5b9fd1bd45851574f7d25019/Saliency-defect-detection-of-magnetic-tiles.pdf
下载:https://github.com/abin24/Magnetic-tile-defect-datasets.
在这里插入图片描述

NanoTwice

纳米纤维材料的SEM图像缺陷
论文:https://ieeexplore.ieee.org/document/7790862
下载:https://www.mi.imati.cnr.it/ettore/NanoTWICE/

  1. 图像分辨率:1024 × 696
  2. 图像数量:45 训练集31 测试集14
  3. 数据平衡性:
  • 训练集:
    • 正常 3 异常 28
  • 测试集:
    • 正常 2 异常 12
      在这里插入图片描述

东北大学热轧带钢表面缺陷数据集

该数据集是东北大学的宋克臣等几位老师收集的,一共包含了三类数据,官网有时打不开.
官网:http://faculty.neu.edu.cn/me/songkc/Vision-based_SIS_Steel.html
百度网盘链接:
https://pan.baidu.com/s/1bAKoSG7VHE98JdHJPGJvcw
提取码:ibje

NEU surface defect database

收集了热轧钢带六种典型表面缺陷,即轧入氧化皮(RS)、斑块(Pa)、裂纹(Cr)、麻面(PS)、夹杂物(In)和划痕(Sc)。
数据库包含 1,800 张灰阶图像:六种典型表面缺陷各 300 张(分为 240 张用于训练,60 张用于测试)
论文:https://www.sciencedirect.com/science/article/abs/pii/S0169433213016437
下载:https://www.kaggle.com/datasets/kaustubhdikshit/neu-surface-defect-database/code
在这里插入图片描述

Micro surface defect database

微小型的带钢缺陷数据,缺陷只有约6×6个像素大小
35张
每个图片有对应的xml文件,有异常区域的bbox
在这里插入图片描述

Oil pollution defect database

油污干扰的硅钢表面缺陷数据集
在这里插入图片描述

RSDD

RSDDs数据集包含两种类型的数据集:
第一种是从快车道捕获的I型RSDDs数据集,其中包含67个具有挑战性的图像。
第二个是从普通/重型运输轨道捕获的II型RSDDs数据集,其中包含128个具有挑战性的图像。
请注意,来自这两个数据集的每幅图像至少包含一个缺陷,并且背景复杂且噪声很大。
下载路径:https://www.heywhale.com/mw/dataset/5eba4a48366f4d002d797fd
I型RSDD数据集请添加图片描述
II型RSDDs数据集
在这里插入图片描述

steel defect detection

该数据集中提供了四种类型的带钢表面缺陷
训练集共有12568张,测试集5506张。图像尺寸为1600×256。
下载:https://www.kaggle.com/datasets/creacyhuang/severstal-steel-defect-detection-tfrecord
在这里插入图片描述

steel tube dataset

钢管焊缝缺陷
论文:https://arxiv.org/pdf/2104.14907
下载:https://github.com/huangyebiaoke/steel-pipe-weld-defect-detection/releases/tag/1.0
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

WM811k

从实际制造中的 46,393 个批次中收集了 811,457 个晶圆图
这里列出了该数据集中的所有缺陷类型:
中心、甜甜圈、边缘位置、边缘环、位置、随机、划痕、接近满、无。
论文:http://mirlab.org/jang/research/paper/download/Wafer%20Map%20Failure%20Pattern%20Recognition%20and%20Similarity%20Ranking%20for%20Large-scale%20Datasets.pdf
下载:https://www.kaggle.com/datasets/qingyi/wm811k-wafer-map?resource=download
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

MixedWM38

MixedWM38数据集(WaferMap)有超过38000个晶圆图
包括1个正常图案,8个单一缺陷图案,以及29个混合缺陷图案,总共38种缺陷图案
论文:https://ieeexplore.ieee.org/document/9184890
下载:https://github.com/Junliangwangdhu/WaferMap
在这里插入图片描述

ELPV

介绍:
该数据集包含2,624个300x300像素8位灰度图像样本,涵盖了功能正常和有缺陷的太阳能电池,以及不同程度的退化情况。这些样本来自44个不同的太阳能模块。标注图像中的缺陷要么是内在的,要么是外在的,已知会影响太阳能模块的功率效率。
所有图像都进行了尺寸和透视的标准化处理,并在提取太阳能电池之前消除了EL图像拍摄时镜头可能导致的失真。
标注信息:
每张图像都有一个缺陷概率(介于0和1之间的浮点数)和对应的太阳能电池模块类型(单晶或多晶)的标注。单独的图像存储在images目录下,相应的标注信息存储在labels.csv文件中。。
下载:https://gitcode.com/gh_mirrors/el/elpv-dataset/overview?utm_source=artical_gitcode&index=top&type=href&&isLogin=1
论文:https://arxiv.org/pdf/1807.02894
在这里插入图片描述

天池铝型材表面缺陷

本数据集来自天池飞粤云端2018广东工业智造大数据智能算法赛(https://tianchi.aliyun.com/competition/entrance/231682/introduction)初赛数据集。
数据集里有1万份来自实际生产中有瑕疵的铝型材监测影像数据,每个影像包含一个或多种瑕疵。供机器学习的样图会明确标识影像中所包含的瑕疵类型。
训练集:初赛训练集包括1228条有瑕疵的标注图片(train1: 250张, train2: 978张)和1018条无瑕疵的图片。
测试集A:包含440条测试数据。
测试集B:包含1,000条测试数据
下载:
https://www.cvmart.net/dataSets/detail/272
https://tianchi.aliyun.com/dataset/140666
链接:https://pan.baidu.com/s/1jnSwJ2xRzdSplUtvTbuIuw提取码:i10s
在这里插入图片描述

Kylberg纹理检测

28个纹理类别。
每个类别有 160 个独特的纹理块。(替代数据集中每个原始块有 12 次旋转,每个类别有 160*12=1920 个纹理块)。
纹理补丁大小:576x576 像素。
文件格式:无损压缩8位PNG。
所有补丁都经过标准化,平均值为 127,标准差为 40。
每个纹理类一个目录。
文件命名如下:blanket1-d-p011-r180.png ,其中blank1是类名,d原始图像样本编号(可能的值为a,b,c或d ),p011是补丁编号 11,r180补丁旋转 180 度。
下载:
https://www.cvmart.net/dataSets/detail/273
https://user.it.uu.se/~gusky180/texture/
在这里插入图片描述

UCI带钢缺陷数据集

该数据集包含了7种带钢缺陷类型。这个数据集不是图像数据,而是带钢缺陷的28种特征数据,可用于机器学习项目。
钢板故障的7种类型:装饰、划痕、划痕、污渍、肮脏、颠簸、其他故障。
下载:
https://www.cvmart.net/dataSets/detail/276
https://archive.ics.uci.edu/dataset/198/steel+plates+faults
链接:https://pan.baidu.com/s/1VhEW8xodv5XhTnBKoz5Z_w提取码:9uv2

DAGM 2007数据集

主要针对纹理背景上的杂项缺陷。
较弱监督的训练数据。
包含十个数据集,前6个为训练数据集,后4个为测试数据集。
每个数据集均包含以灰度8位PNG格式保存的1000个“无缺陷”图像和150个“有缺陷”图像。每个数据集由不同的纹理模型和缺陷模型生成。
“无缺陷”图像显示的背景纹理没有缺陷,“有缺陷”图像的背景纹理上恰好有一个标记的缺陷。
所有数据集已随机分为大小相等的训练和测试子数据集。
弱标签以椭圆形表示,大致表示缺陷区域。
下载:
https://www.cvmart.net/dataSets/detail/277
https://hci.iwr.uni-heidelberg.de/content/weakly-supervised-learning-industrial-optical-inspection
在这里插入图片描述

KTH-TIPS

KTH-TIPS 是一个纹理图像数据集,在不同的光照、角度和尺度下拍摄的不同材质表面纹理图片。类型包括砂纸、铝箔、发泡胶、海绵、灯芯绒、亚麻、棉、黑面包、橙皮和饼干共10类。
下载:
https://www.cvmart.net/dataSets/detail/280
链接:https://pan.baidu.com/s/10essXdRrZtlx4CcSirq6Kw提取码:am65
在这里插入图片描述

CD-PCB

我们创建了一个包含 20 对 PCB 图像的小型数据集,其中标注了它们之间的变化。该数据集旨在评估 PCB 检查领域的变化检测算法。
单位:ChangeChip
项目:https://github.com/Scientific-Computing-Lab/ChangeChip
下载:https://drive.google.com/file/d/1b1GFuKS88nKaH-Nfx2XmlhwulUxMwwBA/view
在这里插入图片描述

PKU-Market-PCB

这是一个公共的合成PCB数据集,
单位:北京大学
其中包含1386张图像以及6种缺陷(缺失孔,老鼠咬坏,开路,短路,杂散,伪铜),用于检测、分类、配准任务。
下载:
链接: https://pan.baidu.com/s/1Ee4v-JxdZrDyo8G9uu1dfA, 密码: d6ce
https://robotics.pkusz.edu.cn/resources/dataset/
数据分布:1386=images693张+rotation693张
在这里插入图片描述

在这里插入图片描述

MSD

单位:北京大学
手机屏幕表面缺陷分割数据集。
该数据集包含3种类型的表面缺陷:油污、划痕和斑点。
每类缺陷400张图片,总共1200张。
缺陷是我们模拟工业环境制造的。图像由工业相机采集,分辨率为1920×1080。
数据集划分为训练:验证:测试=6:2:2。数据集格式采用PASCAL VOC。
下载:https://github.com/jianzhang96/MSD
在这里插入图片描述

水泥道路裂缝数据集

主要针对水泥路面的裂缝检测,可用于分类、分割和Detection
下载:
https://github.com/cuilimeng/CrackForest
链接:https://pan.baidu.com/s/19qEBt0JDLs1v6jS5y8HJhQ提取码:7nzx
在这里插入图片描述

桥梁裂缝图像数据

下载链接:https://pan.baidu.com/s/1z-y3GhsWmbqzezD-eZSL-A提取码:z493
在这里插入图片描述

Surface Crack Detection

混凝土表面裂纹缺陷数据集
数据集包含有裂缝和无裂缝的各种混凝土表面的图像。
图像数据被分为两个,即负片(无裂缝)和正片(有裂缝),存放在单独的文件夹中,用于图像分类。
每个类别有 20000 张图像,总共 40000 张图像,像素为 227 x 227,具有 RGB 通道。
数据集由 458 张高分辨率图像(4032x3024 像素)生成,采用 Zhang et al (2016) 提出的方法。
高分辨率图像在表面光洁度和照明条件方面差异很大。未应用随机旋转、翻转或倾斜方面的数据增强。
下载:https://www.kaggle.com/datasets/arunrk7/surface-crack-detection
在这里插入图片描述

天池纺织品表面异常数据集

在布匹的实际生产过程中,由于各方面因素的影响,会产生污渍、破洞、毛粒等瑕疵,为保证产品质量,需要对布匹进行瑕疵检测。布匹疵点检验是纺织行业生产和质量管理的重要环节,目前人工检测易受主观因素影响,缺乏一致性;并且检测人员在强光下长时间工作对视力影响极大。由于布匹疵点种类繁多、形态变化多样、观察识别难道大,导致布匹疵点智能检测是困扰行业多年的技术瓶颈。本数据涵盖了纺织业中布匹的各类重要瑕疵,每张图片含一个或多种瑕疵。数据包括包括素色布和花色布两类,其中,素色布数据约8000张,用于初赛;花色布数据约12000张,用于复赛。
分为7个类别names:
0:污渍
1:三丝
2:结头
3:浆斑
4:松经
5:粗维
链接:https://pan.baidu.com/s/1eRCCpQhkH05gBTaDkdSAAw提取码:2j46
在这里插入图片描述
在这里插入图片描述

输电线路绝缘子数据集

Normal_Insulators包含由无人机捕获的绝缘子图像,数量为600张。
Defective_Insulators包含有缺陷的绝缘体,绝缘子缺陷图像的数量为248张。数据集中包括数据集和标签。
下载:https://github.com/InsulatorData/InsulatorDataSet
在这里插入图片描述

CAD-SD

CAD-SD 数据集中包含了螺杆一侧安装有六角螺母的产品正常图像。
数据集中的异常图像类型大致分为局部区域异常和共现关系异常。
局部区域异常包括“划痕”(产品局部有划痕)和“涂漆”(产品局部有涂漆)。
共现关系异常包括“过耦合”(螺杆两侧六角螺母均耦合)和“缺失”(螺杆两侧均未耦合六角螺母)。
正常训练图像共 400 张。评估用“正常”、“划痕”、“涂漆”、“过耦合”和“缺失”分别包含 210 张、41 张、41 张、44 张和 40 张图像。
下载:https://github.com/IshidaKengo/SA-PatchCore
在这里插入图片描述

Coco Car Damage Detection Dataset

下载:https://www.kaggle.com/datasets/lplenka/coco-car-damage-detection-dataset/data
数据集包含带有一个或多个损坏部件的汽车图像。文件夹包含数据集中的所有 80 幅图像。
还有img/三个文件夹train/,分别用于训练、验证和测试目的。val/test/
文件夹

  1. train/:
    包含 59 张图片。
    COCO_train_annos.json:训练损害赔偿注释文件,其中damage是唯一的类别。
    COCO_mul_train_annos.json:对有损伤的部件进行训练标注文件。根据损伤发生的部位,部件可分为五类。部件可以是headlamp, front_bumper, hood, door, rear_bumpe
  2. val/:
    包含 11 张图片。
    COCO_val_annos.json:损害的验证注释文件,其中damage是唯一的类别。
    COCO_mul_val_annos.json:损坏部件的验证注释文件。根据损坏的部件,部件可分为五类。部件可以是headlamp、、、、、。front_bumperhooddoorrear_bumper
  3. test/:
    包含 8 张图片。
  4. 注释文件具有以下键:
    “注释”:包含边界框和分割数组。
    “categories”:包含注释中的类别列表。
    “图像”:注释中使用的每幅图像的详细信息。
    “info”:创作者信息
    “licenses”:许可信息
    在这里插入图片描述

Coco Car Damage Detection Dataset 2

下载网址:https://universe.roboflow.com/dan-vmm5z/car-damage-coco-dataset/browse?queryText=&pageSize=50&startingIndex=0&browseQuery=true
数据量:1700张
标签:分割,bbox
在这里插入图片描述

Detectron2 Car Damage Detection【算法】

下载:https://www.kaggle.com/code/lplenka/detectron2-car-damage-detection
这是一个检测车缺陷的算法。用的数据集是coco-car-damage-detection-dataset
检测结果
在这里插入图片描述

car defect-defection

下载:https://www.kaggle.com/datasets/chdhanavenkatesh/car-defectdefection
只有4张。

在这里插入图片描述

Car Details’ Defects Dataset

下载:https://www.kaggle.com/datasets/zhakhangershaidullov/car-details-defects-dataset
类别:all,break,crack,dent,paint_defect,scratch
数据量:1217张
在这里插入图片描述 在这里插入图片描述

汽车方向盘细节缺陷

下载:

  1. https://aistudio.baidu.com/datasetdetail/235975
    使用海康威视相机拍摄方向盘
  2. https://aistudio.baidu.com/datasetdetail/235977
    本数据集包含使用海康相机拍摄的方向盘图片,进行裁剪和重绘以后形成的新图像,可用作深度学习目标检测基础数据集

PCB缺陷检测

数据排列数据为xmin,ymin,xmax,ymax。共有1500个数据,其中训练集1000,测试集500
https://aistudio.baidu.com/datasetdetail/49931

布匹缺陷

没有介绍,需要下数据集看
https://aistudio.baidu.com/datasetdetail/31076/0

瓷砖缺陷

没有介绍,需要下数据集看
https://aistudio.baidu.com/datasetdetail/32615

绝缘子自爆缺陷图像

没有介绍,需要下数据集看
https://aistudio.baidu.com/datasetdetail/33087

工业缺陷检测

没有介绍,需要下数据集看
https://aistudio.baidu.com/datasetdetail/47124/0

手扶电梯梯级

没有介绍,需要下数据集看
https://aistudio.baidu.com/datasetdetail/44820

【持续更新…】

落幕:
俗话说的好,授人以鱼不如授人以渔。

其实有很多公开&免费的数据集网址。
如果上述数据集中没有你想要的,或者想之后自己找数据集,博主提供以下网址:
【网址有很多数据集,也有很多很多的公开比赛。】

  1. 阿里云——天池:
    https://tianchi.aliyun.com/dataset?spm=a2c22.29524729.J_3941670930.20.4c885d9b99jXAB
  2. 飞浆:
    https://aistudio.baidu.com/datasetoverview
  3. kaggle
    https://www.kaggle.com/
  4. datafountain
    https://www.datafountain.cn/datasets
  5. 和鲸社区
    https://www.heywhale.com/home/dataset
  6. biendata
    https://www.biendata.xyz/
  7. 讯飞
    https://challenge.xfyun.cn/competition?typeSelected=algorithem&industrySelected=CV
  8. datacastle
    https://www.datacastle.cn/dataset_list.html
### 使用 AutoGPTQ 库量化 Transformer 模型 为了使用 `AutoGPTQ` 对 Transformer 模型进行量化,可以遵循如下方法: 安装所需的依赖包是必要的操作。通过 pip 安装 `auto-gptq` 可以获取最新版本的库。 ```bash pip install auto-gptq ``` 加载预训练模型并应用 GPTQ (General-Purpose Tensor Quantization) 技术来减少模型大小和加速推理过程是一个常见的流程。下面展示了如何利用 `AutoGPTQForCausalLM` 类来进行这一工作[^1]。 ```python from transformers import AutoModelForCausalLM, AutoTokenizer from auto_gptq import AutoGPTQForCausalLM model_name_or_path = "facebook/opt-350m" quantized_model_dir = "./quantized_model" tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) model = AutoModelForCausalLM.from_pretrained(model_name_or_path) # 加载已经量化的模型或者创建一个新的量化器对象用于量化未压缩过的模型 gptq_model = AutoGPTQForCausalLM.from_pretrained(quantized_model_dir, model=model, tokenizer=tokenizer) ``` 对于那些希望进一步优化其部署环境中的模型性能的人来说,`AutoGPTQ` 提供了多种配置选项来自定义量化参数,比如位宽(bit-width),这有助于平衡精度损失与运行效率之间的关系。 #### 注意事项 当处理特定硬件平台上的部署时,建议查阅官方文档以获得最佳实践指导和支持信息。此外,在实际应用场景之前应该充分测试经过量化的模型以确保满足预期的质量标准。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值