matlab-矩阵应用

det(A):计算行列式

A=[1 2 3;4 5 6;7 8 9 ]

A =

 1     2     3
 4     5     6
 7     8     9

det(A)

ans =

-9.5162e-16

求解行列式:
5x+2y-9z=44
-9x-2y+2z=11
6x+7y+3z=44

A=[5 2 -9;-9 -2 2;6 7 3]

A =

 5     2    -9
-9    -2     2
 6     7     3

B=[44;11;44];
A\B

ans =

-5.1602
12.8124
-4.9085

在线性方程组中D*X=B,如果D非奇异,则X=inv(D)*B=D\B
∖ \setminus ’:左除:即分母放在左边
左除的条件:B的行数等于D的阶数
用矩阵的左除求行列式的解

若方程组表述为XD1=B1,D1非奇异。则X=B1inv(D1)=B1/D1
/ / /’:右除
右除的条件:B1的列数等于D1的阶数

矩阵的秩:
对线性独立行或列向量个数的度量
rank(A)

rank(A)

ans =

 3

如果对于一个线性方程组而言,系数矩阵的秩等于增广矩阵的秩,则该方程组有唯一解。
x-2y+z=12
3x+4y+5z=20
-2x+y+7z=11

A=[1 -2 1;3 4 5;-2 1 7];
B=[12;20;11];
C=[A,B];
r=rank(A)

r =

 3

p=rank( C C C)

p =

 3

Z=A\B

Z =

4.3958
-2.2292
3.1458

逆矩阵:
inv(A)
A*inv(A)=E

A=[2 3;4 5]

A =

 2     3
 4     5

inv(A)

ans =

-2.5000 1.5000
2.0000 -1.0000

A*(inv(A))

ans =

 1     0
 0     1

将矩阵化为最简行阶梯型矩阵:
rref(A)使用高斯-乔丹消去法生成矩阵A的最简行梯形

A=[1 2;4 7]

A =

 1     2
 4     7

rref(A)

ans =

 1     0
 0     1

幻数矩阵A:
magix(n):矩阵的元素值范围从1到n^2,并且一列中的元素和等于一行中的元素和。

A=magic(5)

A =

17    24     1     8    15
23     5     7    14    16
 4     6    13    20    22
10    12    19    21     3
11    18    25     2     9

t=sum(A)

t =

65    65    65    65    65

rref(A)

ans =

 1     0     0     0     0
 0     1     0     0     0
 0     0     1     0     0
 0     0     0     1     0
 0     0     0     0     1

A=magic(8)

A =

64     2     3    61    60     6     7    57
 9    55    54    12    13    51    50    16
17    47    46    20    21    43    42    24
40    26    27    37    36    30    31    33
32    34    35    29    28    38    39    25
41    23    22    44    45    19    18    48
49    15    14    52    53    11    10    56
 8    58    59     5     4    62    63     1

rref(A)

ans =

 1     0     0     1     1     0     0     1
 0     1     0     3     4    -3    -4     7
 0     0     1    -3    -4     4     5    -7
 0     0     0     0     0     0     0     0
 0     0     0     0     0     0     0     0
 0     0     0     0     0     0     0     0
 0     0     0     0     0     0     0     0
 0     0     0     0     0     0     0     0

矩阵分解:
可以快速生成矩阵的LU、QR或奇异值分解。
[L,U]=lu(A)

A=[-1 2 0;4 1 8;2 7 1];
[L,U]=lu(A)

L =

-0.2500 0.3462 1.0000
1.0000 0 0
0.5000 1.0000 0

U =

4.0000    1.0000    8.0000
     0    6.5000   -3.0000
     0         0    3.0385

可以使用LU分解来解决一个线性系统。
3x+2y-9z=-65
-9x+5y+2z=16
6x+7y+3z=5

A=[3 2 -9;-9 5 2;6 7 3];
B=[-65;16;5]

B =

-65
16
5

rank(A)

ans =

 3

rank([A,B])

ans =

 3

x=A\B

x =

-1.0065
-1.2549
6.6078
对于一个线性方程组:
先对矩阵A进行LU分解,则解X=U(L\B)

[L,U]=lu(A)

L =

-0.3333 0.3548 1.0000
1.0000 0 0
-0.6667 1.0000 0

U =

-9.0000 5.0000 2.0000
0 10.3333 4.3333
0 0 -9.8710

x=U(L\B)

x =

-1.0065
-1.2549
6.6078

[q,r]=deconv(a,b):将a多项式除以b多项式,得到q因式,余下r

a=[3 10 25 36 50]
b=[1 2 10]
[q,r]=deconv(a,b)

main

a =

 3    10    25    36    50

b =

 1     2    10

q =

 3     4   -13

r =

 0     0     0    22   180

polyval(p,s):求多项式在自变量等于s时的值

p=[1 5 6]
polyval(p,5)

main

p =

 1     5     6

ans =

56

poly(J):J为对角矩阵:求出以J的特征值为解的多项式方程

J=[-2+2*sqrt(3)j 0 0;0 -2-2sqrt(3)*j 0;0 0 -10]
p=poly(J)

main

J =

-2.0000 + 3.4641i 0.0000 + 0.0000i 0.0000 + 0.0000i
0.0000 + 0.0000i -2.0000 - 3.4641i 0.0000 + 0.0000i
0.0000 + 0.0000i 0.0000 + 0.0000i -10.0000 + 0.0000i

p =

1.0000   14.0000   56.0000  160.0000
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一夕ξ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值