程序员必备十大算法-最短路径(2)

最短路径(2)
时间复杂度为((m+n)logN),空间复杂度为M,但是不可以解决负权和带有负权值的路径,更不能判断是否带有负权或者负权的边
思路
初始化在第一个站点dis
然后寻找没有经过的路径最短的站点(用book数组标记)检测可以去的路径是否可以减短
if(dis[k]>dis[u]+a[u][k]) { dis[k]=dis[u]+a[u][k] }
检测的时候只用检查前(n-1)个站点,最后一个站点不用检测for(int i=1;i<=n-1;i++)

//最短路径-Dijkstar(最常用的算法) 
#include<bits/stdc++.h>
using namespace std;
int main()
{
	int a[10][10];
	int m,n,u;
	cin>>n>>m;
	
	for(int i=1;i<=n;i++)
	    for(int j=1;j<=n;j++)
		    if(i==j)a[i][j]=0;
			else a[i][j]=9999;
	
	for(int i=1;i<=m;i++)
	{
		int x,y,t;
		cin>>x>>y>>t;
		a[x][y]=t;
	}
	int *dis=a[1];看不懂的话就用下面的代码代替
	/*
   for(int i=1;i<=n;i++)
   {
       dis[i]=a[1][i];
   }
   */
	int book[10];
	memset(book,0,sizeof(book));     
	book[1]=1;
	//核心算法
	for(int i=1;i<=n-1;i++)
	{
		int min=9999;
		
		for(int j=1;j<=n;j++)
		{
			if(book[j]==0&&dis[j]<min)
			{
				min=dis[j];
				u=j;
			}
		}
		book[u]=1;
		for(int k=1;k<=n;k++)
		{
			if(a[u][k]<9999)
			{
				if(dis[k]>dis[u]+a[u][k])
				{
					dis[k]=dis[u]+a[u][k];
				}
			}
		}
		
	 } 
	for(int i=1;i<=n;i++)
	    cout<<dis[i]<<" ";
	
	return 0;
}
 
 

运行结果
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值