Semi-Supervised Classification with Graph Convolutional Networls中谈到的图卷积的发展

本文探讨了图卷积网络的发展,从原始的图卷积出发,指出其因拉普拉斯矩阵特征分解带来的计算复杂性问题。然后介绍了快速图卷积,通过切比雪夫多项式降低参数需求和计算难度。最后讨论了线性图卷积的简化形式,并在归一化后用于神经网络模型。这种方法为大规模图数据的处理提供了有效途径。
摘要由CSDN通过智能技术生成

原始图卷积

核心思想:借助傅里叶变换,将原始信号X变换到频域,在频域上乘一个信号,再做傅里叶逆变换回到时域。

卷积公式:
g θ ∗ x = U g θ U T x g\theta*x = Ug\theta U^Tx gθx=UgθUTx
其中:
gθ就是在频域中的一个filter,也称为为卷积核。
U是图的拉普拉斯矩阵L的特征向量矩阵。
拉普拉斯矩阵:
L = I N − D − 1 2 A D − 1 2 = U Δ U T L=I_N-D^{-\frac{1}{2}}AD^{-\frac{1}{2}}=U\Delta U^T L=IND21AD21=UΔUT
可以简单理解为,对拉普拉斯矩阵L进行了特征分解,得到特征值组成的对角矩阵Δ和特征向量组成的矩阵U

存在的问题:
对于拉普拉斯矩阵进行特征分解的计算过程非常复杂,如果图的规模较大,顶点的个数多时,会带来巨大的计算开销。

快速图卷积

核心思想:在原始图卷积的基础上,利用切比雪夫多项式进行K阶逼近这个时域的卷积核。

切比雪夫多项式:
T 0 ( x ) = 1 ; T_0(x)=1; T0(x)=1;
T 1 ( x ) = x ; T_1(x)=x; T1(x)=x;
T k ( x ) = 2 x T k − 1 ( x ) − T k − 1 ( x ) T_k(x)=2xT_{k-1}(x)-T_{k-1}(x) Tk(x)=2xTk1(x)Tk1(x)
利用切比雪夫多项式近似逼近卷积核
g θ ∗ x ≈ ∑ k = 0 K θ k T k ( L ~ ) x g\theta *x \approx \sum_{k=0}^{K}\theta _kT_k(\tilde L)x gθxk=0KθkTk(L~)x
其中:
L ~ = 2 λ m a x L − I N \tilde L = \frac {2}{\lambda _{max}}L-I_N L~=λmax2LIN
是拉普拉斯矩阵L中最大的特征值

总结:
这时候的图卷积将需要的参数降到了K个,并且不需要进行拉普拉斯矩阵的特征分解,很大程度上降低了计算难度

线性图卷积

核心思想:快速图卷积中,K的次数表示的是顶点受到距离中央顶点K步以内的顶点的影响。当K=1时,则只在乎顶点与其相邻顶点之间的影响。

假设
L ~ = 2 λ m a x L − I N ≈ 2 \tilde L = \frac {2} {\lambda _{max}} L-I_N \approx 2 L~=λmax2LIN2
那么原始图卷积中提到的卷积公式就可以近似为:
g θ ∗ x = ∑ k = 0 K θ k T k ( L ~ ) x = θ 0 x + θ 1 ( L − I N ) x = θ 0 x − θ 1 D − 1 2 A D − 1 2 x g\theta *x=\sum_{k=0}^{K} \theta _kT_k(\tilde L)x=\theta_0x+\theta _1(L-I_N)x = \theta _0x-\theta _1D^{-\frac{1}{2}}AD^{-\frac{1}{2}}x gθx=k=0KθkTk(L~)x=θ0x+θ1(LIN)x=θ0xθ1D21AD21x
将上式联立拉普拉斯矩阵的特征分解公式:
L = I N − D − 1 2 A D − 1 2 = U Δ U T L = I_N-D^{-\frac{1}{2}}AD^{-\frac{1}{2}}=U\Delta U^T L=IND21AD21=UΔUT
并令 θ = θ 0 = − θ 1 \theta = \theta_0=-\theta _1 θ=θ0=θ1
可以得到
g θ ∗ x ≈ θ ( I N + D − 1 2 A D − 1 2 ) x g\theta *x \approx \theta(I_N+D^{-\frac{1}{2}}AD^{-\frac{1}{2}})x gθxθ(IN+D21AD21)x
归一化
I N + D − 1 2 A D − 1 2 → D ~ − 1 2 A ~ D ~ 1 2 I_N + D^{-\frac{1}{2}}AD^{-\frac{1}{2}} \rightarrow \tilde D^{-\frac{1}{2}}\tilde A \tilde D^{\frac {1}{2}} IN+D21AD21D~21A~D~21
A ~ = A + I N \tilde A = A + I_N A~=A+IN
D ~ i i = ∑ j A ~ i j \tilde D_{ii} = \sum_j \tilde A_{ij} D~ii=jA~ij
可以得到
g θ ∗ x ≈ ( D ~ − 1 2 A ~ D ~ 1 2 ) X θ g \theta*x \approx (\tilde D^{-\frac{1}{2}}\tilde A \tilde D^{\frac {1}{2}})X\theta gθx(D~21A~D~21)Xθ
在神经网络模型之中,就可以表示为:
H ( l + 1 ) = σ ( D ~ − 1 2 A ~ D ~ 1 2 H ( l ) W ( l ) ) H^{(l+1)} = \sigma (\tilde D^{-\frac{1}{2}}\tilde A \tilde D^{\frac {1}{2}} H^{(l)}W^{(l)}) H(l+1)=σ(D~21A~D~21H(l)W(l))

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
很抱歉,根据提供的引用内容,我无法提供关于"SEMI-SUPERVISED CLASSIFICATION WITH GRAPH CONVOLUTIONAL NETWORKS"代码的信息。引用的内容主要介绍了上结点分类的半监督问题以及相关的研究方法和改进。如果您需要获取该代码,建议您查阅相关的学术论文或者在开源代码平台上搜索相关的项目。 #### 引用[.reference_title] - *1* [Semi-supervised classification with graph convolutional networks](https://blog.csdn.net/weixin_41362649/article/details/113232898)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insert_down28v1,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [Kipf-GCN《Semi-Supervised Classification With Graph Convolutional Networks》论文详解](https://blog.csdn.net/u012762410/article/details/127177181)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insert_down28v1,239^v3^insert_chatgpt"}} ] [.reference_item] - *3* [Semi-Supervised Classification with Graph Convolutional Networks](https://blog.csdn.net/m0_37924639/article/details/124884547)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insert_down28v1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值