图卷积的演变-从谱图卷积到GCN

文章探讨了傅里叶变换的概念,将其从周期信号扩展到非周期信号,并介绍了如何在图上进行傅里叶变换。接着,讨论了图拉普拉斯矩阵及其特征向量作为图傅里叶变换的基础。文章进一步阐述了传统的卷积运算,解释了卷积定理,并将这些概念应用于图信号,提出谱图卷积。ChebNet和GCN作为图卷积网络的两种方法被介绍,特别是GCN简化了谱图卷积,使其更易于处理局部信息。
摘要由CSDN通过智能技术生成

基础

傅里叶变换

傅里叶级数是对周期为T的确定性信号做展开,而傅里叶变换将周期推广到无穷,能对具有任意长度的信号做展开。

傅里叶级数和傅里叶变换是什么关系?
如下为傅里叶变换公式:
f ^ ( t ) = ∫ f ( x ) exp ⁡ − i w t d x = ∫ f ( x ) ( c o s ( w x ) + i s i n ( w x ) ) d x \hat{f}(t)={\int}f(x){\exp}^{-iwt}dx = {\int}f(x) \left(cos(wx) + isin(wx) \right)dx f^(t)=f(x)expiwtdx=f(x)(cos(wx)+isin(wx))dx
用欧拉公式将 exp ⁡ − i w t {\exp}^{-iwt} expiwt展开后,可发现相当于用不同频率的正弦和余弦信号作为基向量和 f ( x ) f(x) f(x)做内积,从而将其从时域变到频域空间。

图傅里叶变换

要将傅里叶变换推广到图上,其关键是找到图信号的基函数

拉普拉斯算子(Laplacian operator) ∆ ∆ 的物理意义是空间二阶导数,其准确定义是:标量梯度场中的散度(梯度的散度,二阶偏导之和),可用于描述物理量的流入流出,例如热传播。

传统傅里叶的基函数 exp ⁡ − i w t {\exp}^{-iwt} expiwt可视为拉普拉斯算子的特征向量,频率为特征值:
∆ e − i w t = ∂ 2 ∂ t 2 e − i w t = − w 2 e − i w t ∆{e}^{-iwt}=\frac{{\partial}^2}{{\partial}t^2}{e}^{-iwt}={-w^2}{e}^{-iwt} eiwt=t22eiwt=w2eiwt
其可视为广义的特征方程,和矩阵的特征向量类似(在经过变换后只是改变大小,而方向不变)。

图拉普拉斯矩阵 L \mathbf{L} L是拉普拉斯算子的在图(离散空间)上的的推广,其可用于衡量图上信号的平滑程度。

那么, L ∈ R N × N \mathbf{L} \in \mathbb{R}^{N \times N} LRN×N的特征向量就可以类比基函数 exp ⁡ − i w t {\exp}^{-iwt} expiwt,作为图傅里叶变换的基函数(向量)。

L = D − A = U Λ U T , 拉普拉斯矩阵特征分解 \mathbf{L} = \mathbf{D} - \mathbf{A} = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^{T}, 拉普拉斯矩阵特征分解 L=DA=UT,拉普拉斯矩阵特征分解
U = ( u 1 , u 2 , ⋯ , u N ) ∈ R N × N , 拉普拉斯矩阵特征向量 \mathbf{U} = (\mathbf{u}_1, \mathbf{u}_2, {\cdots}, \mathbf{u}_N) \in \mathbb{R}^{N \times N}, 拉普拉斯矩阵特征向量 U=(u1,u2,,uN)RN×N,拉普拉斯矩阵特征向量
U − 1 = U T , U U T = I \mathbf{U}^{-1} =\mathbf{U}^T, \mathbf{U} \mathbf{U}^T = \mathbf{I} U1=UT,UUT=I
Λ , 拉普拉斯矩阵特征值对角矩阵 \mathbf{\Lambda}, 拉普拉斯矩阵特征值对角矩阵 Λ,拉普拉斯矩阵特征值对角矩阵

ϕ l = u l T x , 基向量上的分量 \phi_l = \mathbf{u}_l^{T} \mathbf{x},基向量上的分量 ϕl=ulTx,基向量上的分量
一个包含 N N N个节点图,图上每个节点 i i i有一个标量信号,这时图信号 x ∈ R N \mathbf{x} \in \mathbb{R}^{N} xRN都可表示为拉普拉斯矩阵特征向量(基向量)的线性组合。

Φ = [ ϕ 1 . . . ϕ N ] = U T x ,图傅里叶变换 \mathbf{\Phi} = \left[ \begin{matrix} \phi_1 \\ ... \\ \phi_N \end{matrix} \right]=\mathbf{U}^T \mathbf{x}, 图傅里叶变换 Φ= ϕ1...ϕN =UTx,图傅里叶变换
x = ∑ l ϕ l u l = U ϕ ,图傅里叶逆变换 \mathbf{x} ={\sum}_{l} \phi_l \mathbf{u}_l = \mathbf{U} \mathbf{\phi},图傅里叶逆变换 x=lϕlul=Uϕ,图傅里叶逆变换

图傅里叶变换,在这里就是将图信号 x \mathbf{x} x投影(内积计算分量)到 L \mathbf{L} L的特征向量构成的基向量上。就是将 x \mathbf{x} x从原始空间变到新的空间-频域。
Φ = U T x = U T ( U Φ ) , x = U Φ = U ( U T x ) \mathbf{\Phi}=\mathbf{U}^T \mathbf{x}= \mathbf{U}^T (\mathbf{U} \mathbf{\Phi}), \mathbf{x} = \mathbf{U} \mathbf{\Phi} = \mathbf{U} (\mathbf{U}^T \mathbf{x}) Φ=UTx=UT(),x==U(UTx)

图傅里叶变换(Graph Fourier Transformation)就是基于图拉普拉斯矩阵,将图信号从空域(顶点上)转换到谱域(频域)的一种方法。

第一代:Spectral Network

卷积

卷积运算: 两个实值函数的卷积运算可以理解成,以其中一个函数为权重,对另一个函数做加权平均的操作(这样可以令函数平滑降噪)。

卷积运算的目的不限于此。其操作可以得到一个新的函数,相当于是这两个函数内积的结果。

例子,给定 f ( t ) f(t) f(t)表示时刻 t t t的测量值。由于测量值可能存在噪声,且时间上越近的测量结果越相关,可使用加权方法对最近测量值赋予高权重,来获得加权平滑结果。

可用一个加权函数 g ( a ) g(a) g(a)来实现,其中 a a a代表测量值距当前时刻的时间间隔:

s ( t ) = ( f ∗ g ) ( t ) = ∑ a = − ∞ + ∞ f ( a ) g ( t − a ) ,离散情况 s(t) = (f * g)(t) = \sum_{a=-\infty}^{+\infty} f(a) g(t-a), 离散情况 s(t)=(fg)(t)=a=+f(a)g(ta),离散情况
t t t为目标时刻,当 a a a t t t时,间隔为 t − a = 0 t-a=0 ta=0,有 f ( t ) g ( 0 ) f(t) g(0) f(t)g(0),如下表所示(实际大于 t t t取不到):

a a a t − 3 t-3 t3 t − 2 t-2 t2 t − 1 t-1 t1 t t t
f ( a ) f(a) f(a) f ( t − 3 ) f(t-3) f(t3) f ( t − 2 ) f(t-2) f(t2) f ( t − 1 ) f(t-1) f(t1) f ( t ) f(t) f(t)
g ( t − a ) g(t-a) g(ta) g ( 3 ) g(3) g(3) g ( 2 ) g(2) g(2) g ( 1 ) g(1) g(1) g ( 0 ) g(0) g(0)

s ( t ) = ( f ∗ g ) ( t ) = ∫ f ( a ) g ( t − a ) d a ,连续情况 s(t) =(f * g)(t) = \int f(a) g(t-a) d{a},连续情况 s(t)=(fg)(t)=f(a)g(ta)da,连续情况

卷积定理:卷积的傅里叶变换等于傅里叶变换的乘积(时域卷积,等于在频域做乘积)
F { f ∗ g } = F [ f ] ⊙ F [ g ] ] F\{f*g\} = F[f] {\odot} F[g]] F{fg}=F[f]F[g]]
通过傅里叶逆变换可以得到:

f ∗ g = F − 1 [ F [ f ] ⊙ F [ g ] ] f*g = F^{-1}[F[f]{\odot}F[g]] fg=F1[F[f]F[g]]

图上的卷积

在图上做,图信号和滤波器g的卷积:

输入 x ∈ R N ,每一个节点有一个标量 输入 \mathbf{x} \in \mathbb{R}^{N},每一个节点有一个标量 输入xRN,每一个节点有一个标量

g ∈ R N ,滤波器向量 \mathbf{g} \in \mathbb{R}^{N},滤波器向量 gRN,滤波器向量
那么,图上的卷积可以定义为:

x ⋆ g = U ( ( U T x ) ⊙ ( U T g ) ) = U ( U T x ⊙ θ ) \mathbf{x} \star \mathbf{g} = \mathbf{U} \left( (\mathbf{U}^{T}\mathbf{x}) {\odot} (\mathbf{U}^{T}\mathbf{g})\right) = \mathbf{U} (\mathbf{U}^{T}\mathbf{x} {\odot} \mathbf{\theta}) xg=U((UTx)(UTg))=U(UTxθ)

把 U T g 统一视为一个, θ ∈ R N ( 傅里叶变换后的滤波器 g ) 把 \mathbf{U}^{T}\mathbf{g}统一视为一个,\mathbf{\theta} \in \mathbb{R}^{N} (傅里叶变换后的滤波器 \mathbf{g}) UTg统一视为一个,θRN(傅里叶变换后的滤波器g)
传统滤波器需根据经验设定,在这里可将滤波器视为:可参数化的卷积核
( U T x ) ⊙ θ , θ ⊙ ( U T x ) ,交换顺序不影响 (\mathbf{U}^{T}\mathbf{x}) {\odot} \mathbf{\theta},\mathbf{\theta} {\odot} (\mathbf{U}^{T}\mathbf{x}),交换顺序不影响 (UTx)θθ(UTx),交换顺序不影响

卷积运算中的乘法为element-wise product,即在频域的乘法。在这里,其直观意义就是:

用卷积核的参数对频域信号的每个分量进行加权操作,来实现滤波(不同的频率分量有不同的权重系数,例如可对高频分量施以更低权重)

那么将卷积核向量展开为对角矩阵形式(行变换),有:
g θ = d i a g ( θ ) = [ θ 1 . . . 0 . . . . . . . . . 0 . . . θ N ] \mathbf{g}_{\theta} = diag{(\mathbf{\theta}) } = \left[ \begin{matrix} {\theta}_1 & ... & 0 \\ ... & ... & ... \\ 0 & ... & {\theta}_N \end{matrix} \right] gθ=diag(θ)= θ1...0.........0...θN
最后,可得到:
x ⋆ g = U ( U T x ⊙ θ ) = U ( θ ⊙ U T x ) = U g θ U T x \mathbf{x} \star \mathbf{g} = \mathbf{U} (\mathbf{U}^{T}\mathbf{x} {\odot} \mathbf{\theta} ) \\ = \mathbf{U} (\mathbf{\theta} {\odot} \mathbf{U}^{T}\mathbf{x} ) \\ = \mathbf{U} \mathbf{g}_{\theta} \mathbf{U}^{T} \mathbf{x} xg=U(UTxθ)=U(θUTx)=UgθUTx

假设每个节点有 d d d维的特征,即通道数为 d d d d d d个图信号):
X = [ x 11 x 12 . . . x 1 d . . . . . . . . . x n 1 x n 2 . . . x n d ] = [ x 1 x 2 . . . x d ] \mathbf{X} = \left[ \begin{matrix} {x_{11}} & {x_{12}} & ... & {x_{1d}} \\ ... & ... & ... \\ {x_{n1}} & {x_{n2}} & ... & {x_{nd}} \end{matrix} \right] = \left[ \begin{matrix} {\mathbf{x}_1} & {\mathbf{x}_2} & ... & {\mathbf{x}_d} \end{matrix} \right] X= x11...xn1x12...xn2.........x1dxnd =[x1x2...xd]
注意, X ∈ R N × d \mathbf{X} \in \mathbb{R}^{N \times d} XRN×d, 每一个通道可使用多个卷积核(类似CNN,拓展通道数)。

对于第 l l l层谱图卷积,通道数为 d l {d_l} dl
假设第 l 和 l + 1 层的节点状态为: X ( l ) ∈ R N × d l , X ( l + 1 ) ∈ R N × d l + 1 假设第 {l} 和{l+1}层的节点状态为: \mathbf{X}^{(l)} \in \mathbb{R}^{N \times d_l}, \mathbf{X}^{(l+1)} \in \mathbb{R}^{N \times d_{l+1}} 假设第ll+1层的节点状态为:X(l)RN×dlX(l+1)RN×dl+1
X : i ( l ) = x i ( l ) ∈ R N \mathbf{X}^{(l)}_{:i} =\mathbf{x}^{(l)}_{i} \in \mathbb{R}^{N} X:i(l)=xi(l)RN
使用 d l ∗ d ( l + 1 ) d_l * d_{(l+1)} dld(l+1)个卷积核,每次在全部通道分别用 d l d_l dl个卷积核并将结果求和,重复 d ( l + 1 ) d_{(l+1)} d(l+1)次,得到输出特征通道:
x j l + 1 = σ ( U ∑ i = 1 d l Θ i , j l U T x i l ) , ( j = 1 , … , d ( l + 1 ) ) \mathbf{x}^{l+1}_j={\sigma}(\mathbf{U} {\sum}_{i=1}^{d_l} \mathbf{\Theta}^l_{i,j} \mathbf{U}^T \mathbf{x}^l_i), (j = 1, \dots, d_{(l+1)}) xjl+1=σ(Ui=1dlΘi,jlUTxil),(j=1,,d(l+1))
Θ i , j l 直接视为模型参数, U Θ i , j l U T 对应 C N N 中的卷积核 ( 复杂度 O ( n 2 ) ) \mathbf{\Theta}^l_{i,j}直接视为模型参数, \mathbf{U} \mathbf{\Theta}^l_{i,j} \mathbf{U}^T对应CNN中的卷积核(复杂度 O(n^2)) Θi,jl直接视为模型参数,UΘi,jlUT对应CNN中的卷积核(复杂度O(n2))

Spectral Graph Convolution操作定义为:

  • 计算图拉普拉斯(graph Laplacian)的特征值分解,得到特征向量
  • 将图信号进行图傅里叶变换, 然后使用卷积核进行滤波,然后再进行图傅里叶逆变换

缺点:

  • 图拉普拉斯特征分解 O ( n 3 ) O(n^3) O(n3)复杂度, 前向传播 O ( n 2 ) O(n^2) O(n2)
  • 卷积核参数量大: N ∗ d l ∗ d ( l + 1 ) N * d_l * d_(l+1) Ndld(l+1), 易过拟合($N $ 为节点数量)
  • 在空域上没有明确定义,不能局部化到节点上

基于谱图卷积的频域方法,学到的滤波器都是基于拉普拉斯特征分解,也就是取决于图的结构。这也就意味着,在一个特定结构上训练得到的模型,并不能直接应用到另外一个结构不同的图上

第二代:ChebNet

切比雪夫网络实现了:快速局部化和低复杂度
g ⋆ x = x ⋆ g = ( U g θ U T ) x ,谱图卷积 \mathbf{g} \star \mathbf{x} = \mathbf{x} \star \mathbf{g} = (\mathbf{U} \mathbf{g}_{\theta} \mathbf{U}^{T}) \mathbf{x}, 谱图卷积 gx=xg=(UgθUT)x,谱图卷积

从图信号分析的角度考虑,希望这个过滤函数 g \mathbf{g} g能有较好的局部化(只影响节点的局部邻居点)。

故可把 g \mathbf{g} g定义成 L \mathbf{L} L的函数 g θ ( L ) \mathbf{g}_{\theta}(\mathbf{L}) gθ(L), 例如 L \mathbf{L} L的多项式。(这里就有从频域转向空域的意思)

因为作用一次拉普拉斯矩阵 L \mathbf{L} L, 相当于在图上把信息扩散到1阶邻居。

图信号被这个滤波器过滤后 (拉普拉斯矩阵乘法仅与特征值相关),得到:
y = g θ ( L ) x = g θ ( U Λ U T ) x = U g θ ( Λ ) U T x \mathbf{y} = \mathbf{g}_{\theta} (\mathbf{L})\mathbf{x} = \mathbf{g}_{\theta} (\mathbf{U} \mathbf{\Lambda} \mathbf{U}^{T}) \mathbf{x} = \mathbf{U} \mathbf{g}_{\theta} (\mathbf{\Lambda}) \mathbf{U}^{T} \mathbf{x} y=gθ(L)x=gθ(UT)x=Ugθ(Λ)UTx
也就是说,可把谱域图卷积中的卷积核, 看作拉普拉斯矩阵特征值 Λ \mathbf{\Lambda} Λ的函数。通常,可选择使用一个多项式卷积核:
g θ ( Λ ) = ∑ k = 0 K θ k Λ k \mathbf{g}_{\theta}(\mathbf{\Lambda}) = \sum_{k=0}^{K} \mathbf{\theta_{k}} \mathbf{\Lambda}^{k} gθ(Λ)=k=0KθkΛk

其中,参数 θ k \mathbf{\theta_{k}} θk是多项式的系数。通过这个定义,我们现在只需要 K + 1 个 K+1个 K+1参数( K 远小于 N K远小于N K远小于N)这大大降低了参数学习过程的复杂度。就相当于:
g θ ( L ) = ∑ k = 0 K θ k L k \mathbf{g}_{\theta}(\mathbf{L}) = \sum_{k=0}^{K} \mathbf{\theta_{k}} \mathbf{L}^{k} gθ(L)=k=0KθkLk
因此信息最多在每个节点传播 K K K步,即即卷积的局部化。

ChebNet进一步提出了加速方案,把 g θ ( Λ ) \mathbf{g}_{\theta}(\mathbf{\Lambda}) gθ(Λ) 近似为 K K K阶切比雪夫多项式的:
g θ ( Λ ) = ∑ k = 0 K θ k T k ( Λ ~ ) \mathbf{g}_{\theta}(\mathbf{\Lambda}) = \sum_{k=0}^{K} \theta_{k} T_{k}(\tilde{\mathbf{\Lambda}}) gθ(Λ)=k=0KθkTk(Λ~)
其中, T k T_k Tk k k k阶切比雪夫多项式。

Λ ~ = 2 Λ n / λ m a x − I n 是一个对角阵 主要将特征值对角阵映射到 [ − 1 , 1 ] 区间 λ m a x 是 L 最大的特征值, θ k ∈ R K 为切比雪夫系数向量 \tilde{\mathbf{\Lambda}} = 2 \mathbf{\Lambda}_n / \lambda_{max} - \mathbf{I}_n是一个对角阵 \\ 主要将特征值对角阵映射到[-1,1]区间 \\ \lambda_{max}是\mathbf{L} 最大的特征值,\theta_{k} \in \mathbb{R}^{K}为切比雪夫系数向量 Λ~=2Λn/λmaxIn是一个对角阵主要将特征值对角阵映射到[11]区间λmaxL最大的特征值,θkRK为切比雪夫系数向量

之所以采用切比雪夫多项式,是因为考虑到它具有很好的性质,可以循环递归求解:
T k ( x ) = 2 x T k − 1 ( x ) − T k − 2 ( x ) T_{k}(\mathbf{x})=2 \mathbf{x} T_{k-1}(\mathbf{x})-T_{k-2}(\mathbf{x}) Tk(x)=2xTk1(x)Tk2(x)
从初始值 T 0 ( x ) = 1 , T 1 ( x ) = x 开始 , 采用递归公式,可求得 k 阶 T k 的值 从初始值 T_{0}(\mathbf{x})=1, T_{1}(\mathbf{x})=\mathbf{x}开始,采用递归公式,可求得k阶T_k的值 从初始值T0(x)=1,T1(x)=x开始,采用递归公式,可求得kTk的值

为了避免特征值分解,将式(3.8)写回为L的函数:
y = g ∗ x = U g θ ( Λ ) U T x = U ( ∑ k = 0 K θ k T k ( Λ ~ ) ) U T x = ∑ k = 0 K θ k ( U T k ( Λ ~ ) U T ) x = ∑ k = 0 K θ k T k ( L ~ ) x \begin{aligned} \mathbf{y} =\boldsymbol{g} * \mathbf{x} & = \mathbf{U} \mathbf{g}_{\theta} (\mathbf{\Lambda}) \mathbf{U}^{T} \mathbf{x} \\ & = \mathbf{U} \left( \sum_{k=0}^{K} \theta_{k} T_{k}(\tilde{\mathbf{\Lambda}}) \right) \mathbf{U}^{T} \mathbf{x} \\ & = \sum_{k=0}^{K} \theta_{k} \left(\mathbf{U} T_{k}(\tilde{\mathbf{\Lambda}}) \mathbf{U}^{T}\right) x \\ &=\sum_{k=0}^{K} \theta_{k} T_{k}(\tilde{\mathbf{L}}) \mathbf{x} \end{aligned} y=gx=Ugθ(Λ)UTx=U(k=0KθkTk(Λ~))UTx=k=0Kθk(UTk(Λ~)UT)x=k=0KθkTk(L~)x
其中 , L ~ = 2 λ max ⁡ L − I N 。这个式子是拉普拉斯矩阵的 K 次多项式。 其中, \tilde{\mathbf{L}}=\frac{2}{\lambda_{\max }} \mathbf{L}-\mathbf{I}_{N}。这个式子是拉普拉斯矩阵的K次多项式。 其中,L~=λmax2LIN。这个式子是拉普拉斯矩阵的K次多项式。
因此,它仍然保持 K K K-局部化(节点仅被其周围的 K K K阶邻居节点所影响)。可以看到,ChebNet本质上已经是在用多阶次的 L \mathbf{L} L对图信号进行处理。

ChebNet要学习的参数就是切比雪夫多项式的权重系数,同时还需确定切比雪夫多项式的阶数 K K K

第三代:GCN

GCN进一步对ChebNet进行了局部化来限制卷积操作的范围,从而来减缓过拟合的问题。

具体地,它将切比雪夫多项式的项数设为 K = 1 K=1 K=1,它还近似了 λ max ⁡ ≈ 2 \lambda_{\max } \approx 2 λmax2,最后简化的方程如下:
g θ ′ ⋆ x ≈ θ 0 ′ x + θ 1 ′ ( L − I N ) x = θ 0 ′ x − θ 1 ′ D − 1 2 A D − 1 2 x \mathbf{g}_{\theta^{\prime}} \star \mathbf{x} \approx \theta_{0}^{\prime} \mathbf{x}+\theta_{1}^{\prime}\left(\mathbf{L}-\mathbf{I}_{N}\right) \mathbf{x}=\theta_{0}^{\prime} \mathbf{x}-\theta_{1}^{\prime} \mathbf{D}^{-\frac{1}{2}} \mathbf{A} \mathbf{D}^{-\frac{1}{2}} \mathbf{x} gθxθ0x+θ1(LIN)x=θ0xθ1D21AD21x
使用两个无限制的参数 θ 0 ′ \theta'_0 θ0 θ 1 ′ \theta'_1 θ1

在通过设置 θ = θ 0 ′ = − θ 1 ′ \theta=\theta_{0}^{\prime}=-\theta_{1}^{\prime} θ=θ0=θ1来限制参数的数量之后,可得到以下表达式:
y = g ∗ x = g θ ⋆ x ≈ θ ( I N + D − 1 2 A D − 1 2 ) x \mathbf{y} =\boldsymbol{g} * \mathbf{x} = \mathbf{g}_{\theta} \star \mathbf{x} \approx \theta\left(\mathbf{I}_{N}+\mathbf{D}^{-\frac{1}{2}} \mathbf{A} \mathbf{D}^{-\frac{1}{2}}\right) \mathbf{x} y=gx=gθxθ(IN+D21AD21)x
值得一提的是,叠加使用这个操作会导致数值不稳定性以及梯度爆炸或消失(因为不断地乘以同一个矩阵)。因此,该论文里面使用了重规范化操作(renormalization):
I N + D − 1 2 A D − 1 2 → D ~ − 1 2 A ~ D ~ − 1 2 \mathbf{I}_{N}+\mathbf{D}^{-\frac{1}{2}} \mathbf{A} \mathbf{D}^{-\frac{1}{2}}\rightarrow{}\tilde{\mathbf{D}}^{-\frac{1}{2}} \tilde{\mathbf{A}} \tilde{\mathbf{D}}^{-\frac{1}{2}} IN+D21AD21D~21A~D~21
其中, 自环邻接矩阵 A ~ = A + I N \tilde{\mathbf{A}}=\mathbf{A}+\mathbf{I}_{N} A~=A+IN D ~ i i = ∑ j A ~ i j \tilde{\mathbf{D}}_{i i}=\sum_{j} \tilde{\mathbf{A}}_{i j} D~ii=jA~ij

然后,论文将模型扩展为含有 C C C个输入通道的信号, X ∈ R N × C \mathbf{X} \in \mathbb{R}^{N \times C} XRN×C以及 F F F个滤波器来用于提取特征:

Z = D ~ − 1 2 A ~ D ~ − 1 2 X Θ \mathbf{Z}=\tilde{\mathbf{D}}^{-\frac{1}{2}} \tilde{\mathbf{A}} \tilde{\mathbf{D}}^{-\frac{1}{2}} \mathbf{X} \boldsymbol{\Theta} Z=D~21A~D~21XΘ

其中, Θ ∈ R C × F \Theta \in \mathbb{R}^{C \times F} ΘRC×F是滤波器参数矩阵, Z ∈ R N × F \mathbf{Z} \in\mathbb{R}^{N \times F} ZRN×F是卷积信号矩阵。

此时,GCN已经可以很好的联系到空域。GCN可以看成一层网络,而每一个GCN层相当于对目标节点的一阶邻居即自己做加权求和。具体推导可看之前博客: Pytorch-geometric: Creating Message Passing Networks 构建消息传递网络教程 中第三节关于GCN空域解释。

至此,单层的GCN变成了一个一阶模型,它每次卷积只能处理图上的1阶邻居信息。若要处理K阶邻居,需通过堆叠 K K K个上述GCN层,来扩大图卷积地感受野。

实际上后续地改进,通常也是从这个角度出发,如果将 D ~ − 1 2 A ~ D ~ − 1 2 \tilde{\mathbf{D}}^{-\frac{1}{2}} \tilde{\mathbf{A}} \tilde{\mathbf{D}}^{-\frac{1}{2}} D~21A~D~21 视为加了自环的转移矩阵 P \mathbf{P} P ,那么完全可以预先计算其幂 P k \mathbf{P}^{k} Pk或邻接矩阵的幂 A k \mathbf{A}^{k} Ak来直接获取高阶邻居信息。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值