昇思25天学习打卡营第6天|函数式自动微分

函数式自动微分

神经网络的训练主要使用反向传播算法,模型预测值(logits)与正确标签(label)送入损失函数(loss function)获得loss,然后进行反向传播计算,求得梯度(gradients),最终更新至模型参数(parameters)。自动微分能够计算可导函数在某点处的导数值,是反向传播算法的一般化。自动微分主要解决的问题是将一个复杂的数学运算分解为一系列简单的基本运算,该功能对用户屏蔽了大量的求导细节和过程,大大降低了框架的使用门槛。


一、构造神经网络

MindSpore使用函数式自动微分的设计理念,提供更接近于数学语义的自动微分接口grad和value_and_grad。

计算图是用图论语言表示数学函数的一种方式,也是深度学习框架表达神经网络模型的统一方法。我们将根据下面的计算图构造计算函数和神经网络。
函数示意图
在这个模型中, 𝑥为输入, 𝑦 为正确值, 𝑤𝑏 是我们需要优化的参数

具体代码如下:

先定义具体的变量。

x = ops.ones(5, mindspore.float32)  # input tensor
y = ops.zeros(3, mindspore.float32)  # expected output
w = Parameter(Tensor(np.random.randn(5, 3), mindspore.float32), name='w') # weight
b = Parameter(Tensor(np.random.randn(3,), mindspore.float32), name='b') # bias

根据上面的计算图定义函数。 其中,binary_cross_entropy_with_logits 是一个损失函数,计算预测值和目标值之间的二值交叉熵损失。

def function(x, y, w, b):
    z = ops.matmul(x, w) + b
    loss = ops.binary_cross_entropy_with_logits(z, y, ops.ones_like(z), ops.ones_like(z))
    return loss

接下来执行这个函数,可以得到损失值。

loss = function(x, y, w, b)
print(loss)
0.61228055

二.微分函数与梯度计算

为了优化模型参数,需要求参数对loss的导数: ∂ loss ⁡ ∂ w \frac{\partial \operatorname{loss}}{\partial w} wloss ∂ loss ⁡ ∂ b \frac{\partial \operatorname{loss}}{\partial b} bloss,此时我们调用mindspore.grad函数,来获得function的微分函数。

这里使用了grad函数的两个入参,分别为:

  • fn:待求导的函数。
  • grad_position:指定求导输入位置的索引。

由于我们对 w w w b b b求导,因此配置其在function入参对应的位置**(2, 3)**。

使用grad获得微分函数是一种函数变换,即输入为函数,输出也为函数。

执行微分函数,即可获得 𝑤 和 𝑏对应的梯度。

grad_fn = mindspore.grad(function, (2, 3))
grads = grad_fn(x, y, w, b)
print(grads)
(Tensor(shape=[5, 3], dtype=Float32, value=
[[ 5.26625337e-03,  2.69466907e-01,  5.17084897e-02],
 [ 5.26625337e-03,  2.69466907e-01,  5.17084897e-02],
 [ 5.26625337e-03,  2.69466907e-01,  5.17084897e-02],
 [ 5.26625337e-03,  2.69466907e-01,  5.17084897e-02],
 [ 5.26625337e-03,  2.69466907e-01,  5.17084897e-02]]), Tensor(shape=[3], dtype=Float32, value= [ 5.26625337e-03,  2.69466907e-01,  5.17084897e-02]))

三.Stop Gradient

通常情况下,求导时会求loss对参数的导数,因此函数的输出只有loss一项。当我们希望函数输出多项时,微分函数会求所有输出项对参数的导数。此时如果想实现对某个输出项的梯度截断,或消除某个Tensor对梯度的影响,需要用到Stop Gradient操作。

这里我们将function改为同时输出loss和z的function_with_logits,获得微分函数并执行。

def function_with_logits(x, y, w, b):
    z = ops.matmul(x, w) + b
    loss = ops.binary_cross_entropy_with_logits(z, y, ops.ones_like(z), ops.ones_like(z))
    return loss, z


grad_fn = mindspore.grad(function_with_logits, (2, 3))
grads = grad_fn(x, y, w, b)
print(grads)

(Tensor(shape=[5, 3], dtype=Float32, value=
[[ 1.00526631e+00,  1.26946688e+00,  1.05170846e+00],
 [ 1.00526631e+00,  1.26946688e+00,  1.05170846e+00],
 [ 1.00526631e+00,  1.26946688e+00,  1.05170846e+00],
 [ 1.00526631e+00,  1.26946688e+00,  1.05170846e+00],
 [ 1.00526631e+00,  1.26946688e+00,  1.05170846e+00]]), Tensor(shape=[3], dtype=Float32, value= [ 1.00526631e+00,  1.26946688e+00,  1.05170846e+00]))

可以看到w和b的梯度发生了变化。此时如果想要屏蔽掉z对梯度的影响,即仍只求参数对loss的导数,可以使用ops.stop_gradient接口,将梯度在此处截断。我们将function实现加入stop_gradient,并执行。

def function_stop_gradient(x, y, w, b):
    z = ops.matmul(x, w) + b
    loss = ops.binary_cross_entropy_with_logits(z, y, ops.ones_like(z), ops.ones_like(z))
    return loss, ops.stop_gradient(z)

grad_fn = mindspore.grad(function_stop_gradient, (2, 3))
grads = grad_fn(x, y, w, b)
print(grads)
(Tensor(shape=[5, 3], dtype=Float32, value=
[[ 5.26625337e-03,  2.69466907e-01,  5.17084897e-02],
 [ 5.26625337e-03,  2.69466907e-01,  5.17084897e-02],
 [ 5.26625337e-03,  2.69466907e-01,  5.17084897e-02],
 [ 5.26625337e-03,  2.69466907e-01,  5.17084897e-02],
 [ 5.26625337e-03,  2.69466907e-01,  5.17084897e-02]]), Tensor(shape=[3], dtype=Float32, value= [ 5.26625337e-03,  2.69466907e-01,  5.17084897e-02]))

可以看到,求得 𝑤和 𝑏 对应的梯度值与初始function求得的梯度值一致。


四.Auxiliary data

Auxiliary data意为辅助数据,是函数除第一个输出项外的其他输出。通常我们会将函数的loss设置为函数的第一个输出,其他的输出即为辅助数据。

grad和value_and_grad提供has_aux参数,当其设置为True时,可以自动实现前文手动添加stop_gradient的功能,满足返回辅助数据的同时不影响梯度计算的效果。

下面仍使用function_with_logits,配置has_aux=True,并执行。

grad_fn = mindspore.grad(function_with_logits, (2, 3), has_aux=True)

grads, (z,) = grad_fn(x, y, w, b)
print(grads, z)
(Tensor(shape=[5, 3], dtype=Float32, value=
[[ 5.26625337e-03,  2.69466907e-01,  5.17084897e-02],
 [ 5.26625337e-03,  2.69466907e-01,  5.17084897e-02],
 [ 5.26625337e-03,  2.69466907e-01,  5.17084897e-02],
 [ 5.26625337e-03,  2.69466907e-01,  5.17084897e-02],
 [ 5.26625337e-03,  2.69466907e-01,  5.17084897e-02]]), Tensor(shape=[3], dtype=Float32, value= [ 5.26625337e-03,  2.69466907e-01,  5.17084897e-02])) [-4.131899   1.439652  -1.6949538]

可以看到,求得 𝑤和 𝑏 对应的梯度值与初始function求得的梯度值一致。


五.神经网络梯度计算

前述章节主要根据计算图对应的函数介绍了MindSpore的函数式自动微分,但我们的神经网络构造是继承自面向对象编程范式的nn.Cell。接下来我们通过Cell构造同样的神经网络,利用函数式自动微分来实现反向传播。

首先我们继承nn.Cell构造单层线性变换神经网络。这里我们直接使用前文的 𝑤和 𝑏作为模型参数,使用mindspore.Parameter进行包装后,作为内部属性,并在construct内实现相同的Tensor操作。

# 定义模型
class Network(nn.Cell):
    def __init__(self):
        super().__init__()
        self.w = w
        self.b = b

    def construct(self, x):
        z = ops.matmul(x, self.w) + self.b
        return z
# 实例化模型
model = Network()
# 实例化损失值
loss_fn = nn.BCEWithLogitsLoss()

#定义前向函数
def forward_fn(x, y):
    z = model(x)
    loss = loss_fn(z, y)
    return loss

完成后,我们使用value_and_grad接口获得微分函数,用于计算梯度。

由于使用Cell封装神经网络模型,模型参数为Cell的内部属性,此时我们不需要使用grad_position指定对函数输入求导,因此将其配置为None。对模型参数求导时,我们使用weights参数,使用model.trainable_params()方法从Cell中取出可以求导的参数。

grad_fn = mindspore.value_and_grad(forward_fn, None, weights=model.trainable_params())


loss, grads = grad_fn(x, y)
print(grads)
(Tensor(shape=[5, 3], dtype=Float32, value=
[[ 5.26625337e-03,  2.69466907e-01,  5.17084897e-02],
[ 5.26625337e-03,  2.69466907e-01,  5.17084897e-02],
[ 5.26625337e-03,  2.69466907e-01,  5.17084897e-02],
[ 5.26625337e-03,  2.69466907e-01,  5.17084897e-02],
[ 5.26625337e-03,  2.69466907e-01,  5.17084897e-02]]), Tensor(shape=[3], dtype=Float32, value= [ 5.26625337e-03,  2.69466907e-01,  5.17084897e-02]))

可以看到,求得 𝑤和 𝑏 对应的梯度值与初始function求得的梯度值一致。

总结与感想

今天学习了函数式自动微分的内容。相比于其他求微分的方法,自动微分的优势在于将一个复杂的数学运算分解为一系列简单的基本运算,该功能对用户屏蔽了大量的求导细节和过程,大大降低了框架的使用门槛。这节的内容不仅对自动微分的相关接口进行了介绍,还告诉我如何在继承自nn.Cell的神经网络中进行自动微分。期待进一步的学习。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值