
深度学习
关于深度学习的一些知识和代码实践,以及一些感悟心得
向左转, 向右走ˉ
这个作者很懒,什么都没留下…
展开
-
对mnist数据集使用pytorch建立线性神经网络模型(尝试添加L2惩罚和Dropout)
分析 MNIST 数据集,使用pytorch建立具有3个隐藏层的线性神经网络模型,尝试用不同的正则化方法分析数据。原创 2024-05-16 19:37:35 · 299 阅读 · 0 评论 -
对 MNIST图像数据集,建立具有一个隐藏层的神经网络,隐藏层使用 sigmoid 函数作为激活函数。(不使用pytorch,手写python代码实现)
2.使用批量随机梯度下降法,训练具有1个隐藏层的神经网络,其中隐藏层使用 sigmoid 函数作为激活函数,输出层使用softmax激活函数输出概率值。1.首先确保MNIST数据集已经下载到本地并解压,然后根据数据集路径(代码中使用的是绝对路径)导入MNIST数据集,导入后对数据进行相应的预处理。原创 2024-04-26 13:51:36 · 525 阅读 · 1 评论 -
交叉验证法作业——使用线性回归模型拟合数据
交叉验证法是一种用于评估机器学习模型在未知数据上表现的统计分析技术,通过对数据进行分组,然后在这些组上反复进行训练和验证过程,以确保模型评估的稳定性和准确性。最常见的交叉验证方法是k折交叉验证。在k折交叉验证中,原始数据被分成k个子集。每个子集轮流作为验证数据集,其余的k-1个子集组合起来作为训练数据集,这个过程重复进行k次,每次都会产生一个模型评估分数,最终的模型性能是这k次评估分数的平均值。原创 2024-04-24 16:27:48 · 520 阅读 · 0 评论