【论文阅读——SplitFed: When Federated Learning Meets Split Learning】

本文提出SFL,一种结合了联邦学习和分割学习的方法,通过优化架构和使用隐私保护技术,提高计算效率,同时保持类似SL的隐私优势。实验证明SFL在计算时间、通信效率和扩展性上优于传统方法。
摘要由CSDN通过智能技术生成
级别CCFA

1.摘要

联邦学习(FL)和分割学习(SL)是两种流行的分布式机器学习方法。两者都采用了模型对数据的场景;客户端在不共享原始数据的情况下训练和测试机器学习模型。由于机器学习模型的架构在客户端和服务器之间分割,SL提供了比FL更好的模型隐私性。此外,分割模型使SL成为资源受限环境的更好选择。然而,由于在多个客户端之间基于中继进行训练,SL的速度比FL慢。

2.贡献

本文提出了一种名为分割联邦学习(SFL)的新方法,它将这两种方法融合在一起,消除了它们固有的缺点,并采用了一种精细的架构配置,结合差分隐私和PixelDP来增强数据隐私和模型鲁棒性。我们的分析和实证结果表明,(纯)SFL在多个客户端上比SL显著减少了每个全局时期的计算时间,同时提供了类似的测试精度和通信效率。此外,就像SL一样,它在客户端数量增加时的通信效率优于FL。此外,带有隐私和鲁棒性措施的SFL在扩展实验设置下进一步进行了评估

3.目标场景

FL的主要优势在于它允许跨多个客户端并行进行高效的ML模型训练。在FL中,客户端的计算需求和ML训练期间的模型隐私是两个主要问题。(对于一些商业公司的模型,肯定是不能全部下发导数据提供方进行训练的,同时对于客户端服务器配置的要求也比较高)
在SL中,通过切割模型可以使数据公司无法拥有全部模型,同时降低了对于数据公司设备的要求。但SL中的中继式训练会导致客户端资源处于空闲状态,因为一次只有一个客户端与服务器交互;这会导致在许多客户端下训练开销的显著增加。

4.方法

4.1 方法概览

在这里插入图片描述
我们假设模型分为特征提取部分 M c M_c Mc和结果推理部分 M t M_t Mt
这里主要存在3个部分:

  • Client
    • 数据的提供方,将数据通过 M c M_c Mc得到smashed data发送给主服务器。
    • 需要等待服务器进行反向传播,更新本地的 M c M_c Mc
    • 并将 M c ′ M_c' Mc上传到聚合FedServer
    • 等待从FedServer上接收平均后的 M c f e d M_{c}^{fed} Mcfed
    • 用接收后的 M c M_c Mc来提取数据特征
  • Main Server
    • 负责模型的推理和反向传播
  • FedServer
    • 负责 M c M_c Mc的接收、平均和下发

4.2 SFL的几种变体

  • 基于服务器端聚合
    • SFLV1
      • MainServer模型中存在聚合特征部分
    • SFLV2
      • 删除MainServer模型聚合特征部分来增加模型准确性的可能性
  • 基于数据标签分享
    • 将数据标签共享到服务器
      • 基于MPC等技术
    • 不共享任何数据标签到服务器
      • SFL中的ML模型可以被划分为三个部分,假设是一个简单的设置。每个客户端将处理两个客户端模型部分;一个是W的前几层,另一个是W的最后几层和损失计算。W的剩余中间层将在服务器端计算。

6.反思

感觉这个方法真的很酷,但是工程上存在着网络等多种复杂情况。

  • 19
    点赞
  • 31
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值