二、独立 Independence

二、独立 Independence

1、对独立的初步理解

在概率三元组 ( Ω ,   B ,   P ) (\Omega,\ \mathfrak{B},\ P) (Ω, B, P)的定义下,对 A , B ⊂ B A,B \subset \mathfrak{B} A,BB,如果 P ( A ⋂ B ) = P ( A ) P ( B ) P(A \bigcap B)=P(A)P(B) P(AB)=P(A)P(B),则称事件A,B相互独立。

独立指的是两个事件互不影响,但有可能有交集。

注意区分独立和互不相容(互斥)。

独立: P ( A ⋂ B ) = P ( A ) P ( B ) P(A \bigcap B)=P(A)P(B) P(AB)=P(A)P(B)

互不相容(互斥): P ( A B ) = 0 P(AB)=0 P(AB)=0

如果事件A与B独立,则A与 B ‾ \overline{B} B A ‾ \overline{A} A与B、 A ‾ \overline{A} A B ‾ \overline{B} B都是独立的。

2、多个事件相互独立(binary to multiple)

(1)n个事件相互独立

∀ { k 1 , k 2 , … , k n − 1 } ⊆ { 1 , … , n } , P ( ⋂ k = 1 n − 1 A k i ) = ∏ k = 1 n − 1 P ( A k i ) ∀ { k 1 , k 2 , … , k n − 2 } ⊆ { 1 , … , n } , P ( ⋂ k = 1 n − 2 A k i ) = ∏ k = 1 n − 2 P ( A k i ) … 一 直 到 任 意 两 个 相 互 独 立 , 且 P ( ⋂ k = 1 n A k ) = ∏ k = 1 n P ( A k ) , 则 称 A 1 , A 2 , … , A n 相 互 独 立 。 \begin{aligned} & \forall \{ k_1, k_2, \dots, k_{n-1} \} \subseteq \{ 1, \dots, n \}, P(\bigcap_{k=1}^{n-1}A_{k_i})= \prod_{k=1}^{n-1} P(A_{k_i})\\ & \forall \{ k_1, k_2, \dots, k_{n-2} \} \subseteq \{ 1, \dots, n \}, P(\bigcap_{k=1}^{n-2}A_{k_i})= \prod_{k=1}^{n-2} P(A_{k_i})\\ & \dots\\ & 一直到任意两个相互独立,且 P(\bigcap_{k=1}^{n}A_{k})= \prod_{k=1}^{n} P(A_{k}),\\ & 则称A_1,A_2,\dots,A_n相互独立。 \end{aligned} {k1,k2,,kn1}{1,,n},P(k=1n1Aki)=k=1n1P(Aki){k1,k2,,kn2}{1,,n},P(k=1n2Aki)=k=1n2P(Aki)P(k=1nAk)=k=1nP(Ak)A1,A2,,An

(2)3个事件相互独立

对于事件A,B,C,如果它们之间两两独立,即: P ( A B ) = P ( A ) P ( B ) , P ( A C ) = P ( A ) P ( C ) , P ( B C ) = P ( B ) P ( C ) P(AB)=P(A)P(B),P(AC)=P(A)P(C),P(BC)=P(B)P(C) P(AB)=P(A)P(B),P(AC)=P(A)P(C),P(BC)=P(B)P(C),且 P ( A B C ) = P ( A ) P ( B ) P ( C ) P(ABC)=P(A)P(B)P(C) P(ABC)=P(A)P(B)P(C),则称三个事件A,B,C相互独立。

3、一点集合的知识

示性函数(indicator)

I A ( x ) = { 1 ,    x ∈ A 0 ,    x ∉ A I_A (x) = \left \{ \begin{array}{cc} 1,\ \ x\in A \\ 0,\ \ x\notin A\\ \end{array} \right . IA(x)={1,  xA0,  x/A

用示性函数看待集合运算

交     I A B ( x ) = I A ( x ) + I B ( x ) 并     I A ⋃ B ( x ) = I A ( x ) + I B ( x ) − I A B ( x ) 补     I A ‾ ( x ) = 1 − I A ( x ) 差     A − B = A B ‾ 对 称 差     A Δ B = ( A B ‾ ) ⋃ ( A ‾ B )     I A Δ B ( x ) = I A ( x ) ⊕ I B ( x ) = I A ( x ) + I B ( x ) m o d 2 \begin{aligned} & 交 \ \ \ I_{AB}(x)= I_A(x)+I_B(x)\\ & 并 \ \ \ I_{A\bigcup B}(x)= I_A(x)+I_B(x)- I_{AB}(x)\\ & 补 \ \ \ I_{\overline{A}}(x)=1-I_A(x)\\ & 差 \ \ \ A-B=A \overline{B} \\ & 对称差 \ \ \ A \Delta B =(A \overline{B}) \bigcup (\overline{A} B ) \ \ \ I_{A \Delta B}(x) = I_A(x) \oplus I_B(x) = I_A(x) + I_B(x) mod 2 \end{aligned}    IAB(x)=IA(x)+IB(x)   IAB(x)=IA(x)+IB(x)IAB(x)   IA(x)=1IA(x)   AB=AB   AΔB=(AB)(AB)   IAΔB(x)=IA(x)IB(x)=IA(x)+IB(x)mod2

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值