六、常见随机变量的分布和数字特征

1、二项分布与负二项分布

(1)伯努利分布
P ( X = 1 ) = p , P ( X = 0 ) = 1 − p E ( X ) = p , V a r ( X ) = p ( 1 − p ) P(X=1)=p,P(X=0)=1-p\\ E(X)=p,Var(X)=p(1-p) P(X=1)=p,P(X=0)=1pE(X)=p,Var(X)=p(1p)
(2)二项分布:参数为p的伯努利试验独立重复n次,X为试验成功的次数。
X ∼ B ( n , p ) , P ( X = k ) = C n k p k ( 1 − p ) n − k E ( X ) = n p , V a r ( X ) = n p ( 1 − p ) X \sim B(n,p),P(X=k)=C_n^k p^k (1-p)^{n-k}\\ E(X)=np, Var(X)=np(1-p) XB(n,p),P(X=k)=Cnkpk(1p)nkE(X)=np,Var(X)=np(1p)
(3)负二项分布:连续不断地重复伯努利试验,记X为第r次“成功”出现时所需要的试验次数。
X ∼ N B ( n , p ) , P ( X = k ) = C k − 1 r − 1 p r ( 1 − p ) k − r X \sim NB(n,p),P(X=k)=C_{k-1}^{r-1}p^r (1-p)^{k-r} XNB(n,p),P(X=k)=Ck1r1pr(1p)kr

2、泊松分布

X ∼ P ( λ ) , P ( X = k ) = e − λ λ k k ! E ( X ) = λ , V a r ( X ) = λ X \sim P(\lambda), P(X=k)=e^{-\lambda}\frac{\lambda ^k}{k!}\\ E(X)=\lambda, Var(X)=\lambda XP(λ),P(X=k)=eλk!λkE(X)=λ,Var(X)=λ

泊松分布和二项分布的关系:

对二项分布 B ( n , p ) B(n,p) B(n,p)当p很小n很大时 B ( n , p ) B(n,p) B(n,p) P ( n p ) P(np) P(np)很接近,可以相互近似。

泊松分布有峰值,其概率密度图像中峰值的位置和峰值大小都和 λ \lambda λ有关。

泊松分布刻画了小概率事件(稀有事件)多次重复时的概率规律。

泊松定理:

说明了泊松分布和二项分布严格意义下的相互关系。

X n ∼ B ( n , p n ) X_n \sim B(n,p_n) XnB(n,pn),其中 p n p_n pn与n有关,且满足 lim ⁡ n → ∞ n p n = λ \displaystyle \lim_{n \to \infty} np_n =\lambda nlimnpn=λ λ \lambda λ是一个与n无关的常数,则对于任意固定的非负整数k,有 lim ⁡ n → ∞ P ( X n = k ) = λ k k ! e − λ \displaystyle \lim_{n \to \infty} P(X_n =k) = \frac{\lambda ^k}{k!}e^{-\lambda} nlimP(Xn=k)=k!λkeλ

3、几何分布

X ∼ G e ( p ) , P ( X = k ) = ( 1 − p ) k − 1 p E ( X ) = 1 p , V a r ( X ) = 1 − p p 2 X \sim Ge(p),P(X=k)=(1-p)^{k-1}p\\ E(X)=\frac{1}{p},Var(X)=\frac{1-p}{p^2} XGe(p),P(X=k)=(1p)k1pE(X)=p1,Var(X)=p21p

几何分布:连续不断独立重复地进行一个参数为p的伯努利试验,记X为**首次出现“成功”**时所需的总实验次数。

几何分布的无记忆性

如果随机变量X服从几何分布,则对于 ∀ s > 0 , t > 0 \forall s>0,t>0 s>0,t>0,有 P ( X > s + t ∣ X > s ) = P ( X > t ) P(X>s+t|X>s)=P(X>t) P(X>s+tX>s)=P(X>t)

即条件概率的大小和之前的情况无关。

以甲乙两人射击为例,假设两人每次击中10环的概率分别为a,b,且每轮射击概率都不变,那么他们射中10环需要的总次数分别满足参数为a,b的几何分布,前几轮的结果不会影响之后的结果。

4、指数分布

X ∼ E x p ( λ ) , λ > 0 f ( x ) = { 0 , x ≤ 0 λ e − λ x , x > 0 F ( x ) = { 0 , x ≤ 0 1 − e − λ x , x > 0 E ( X ) = 1 λ , V a r X = 1 λ 2 X \sim Exp(\lambda) , \lambda > 0\\ f(x)= \left \{ \begin{array}{rcl} 0, x \leq 0\\ \displaystyle \lambda e^{-\lambda x}, x>0 \end{array}\right.\\ F(x)= \left \{ \begin{array}{rcl} 0, x\leq 0\\ 1-e^{-\lambda x},x>0 \end{array}\right.\\ E(X)= \frac{1}{\lambda} , Var{X}=\frac{1}{\lambda^2} XExp(λ),λ>0f(x)={0,x0λeλx,x>0F(x)={0,x01eλx,x>0E(X)=λ1,VarX=λ21

λ \lambda λ越大,f(x)图像越“瘦高”。

指数分布的重要应用:衡量电子器件的可靠性(使用寿命)

指数分布的无记忆性
X ∼ E x p ( λ ) , λ > 0 , ∀ s > 0 , t > 0 , P ( X > s + t ∣ X > s ) = P ( X > t ) X \sim Exp(\lambda), \lambda > 0, \forall s>0,t>0, P(X>s+t|X>s)=P(X>t) XExp(λ),λ>0,s>0,t>0,P(X>s+tX>s)=P(X>t)

5、均匀分布

X ∼ U ( a , b ) f ( x ) = { 1 b − a , X ∈ [ a , b ] 0 , o t h e r s E ( X ) = a + b 2 . V a r ( X ) = ( b − a ) 2 12 X\sim U(a,b)\\ f(x)=\left \{ \begin{array}{rcl} \frac{1}{b-a},X\in[a,b]\\ 0,others\\ \end{array} \right.\\ E(X)=\frac{a+b}{2}.Var(X)=\frac{(b-a)^2}{12} XU(a,b)f(x)={ba1,X[a,b]0,othersE(X)=2a+b.Var(X)=12(ba)2

6、正态分布

X ∼ N ( μ , σ 2 ) , f ( x ) = 1 2 π σ e − ( x − μ ) 2 2 σ 2 , E ( X ) = μ , V a r ( X ) = σ 2 X \sim N(\mu,\sigma^2),\\ f(x)= \frac{1}{\sqrt{2 \pi} \sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}},\\ E(X)=\mu,Var(X)=\sigma^2 XN(μ,σ2),f(x)=2π σ1e2σ2(xμ)2,E(X)=μ,Var(X)=σ2

μ = 0 , σ 2 = 1 \mu=0,\sigma^2=1 μ=0,σ2=1时, X ∼ N ( 0 , 1 ) X \sim N(0,1) XN(0,1),称为标准正态分布。
φ ( x ) = 1 2 π e − x 2 2 Φ ( x ) = ∫ − ∞ x 1 2 π e − t 2 2 d t E ( X ) = 0 , V a r ( X ) = 1 \varphi(x)=\frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}\\ \Phi(x)=\int_{-\infty}^x \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}}dt\\ E(X)=0,Var(X)=1 φ(x)=2π 1e2x2Φ(x)=x2π 1e2t2dtE(X)=0,Var(X)=1
x ∼ N ( μ , σ 2 ) x\sim N(\mu,\sigma^2) xN(μ,σ2),则 X − μ σ ∼ N ( 0 , 1 ) \displaystyle \frac{X-\mu}{\sigma}\sim N(0,1) σXμN(0,1)
X ∼ N ( 0 , 1 ) , Φ ( − x ) = 1 − Φ ( x ) , φ ( − x ) = φ ( x ) , Φ ( 0 ) = 1 2 X \sim N(0,1),\Phi(-x)=1-\Phi(x),\varphi(-x)=\varphi(x),\Phi(0)=\frac{1}{2} XN(0,1),Φ(x)=1Φ(x),φ(x)=φ(x),Φ(0)=21

  • 1
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值