【算法与数据结构】——倍增、ST、RMQ

简介

三种原理倍增、ST、RMQ主要用于解决区间信息维护与查询问题

倍增

倍增,顾名思义就是成倍增加。若问题的状态空间特别大,则一步步递推的算法复杂度太高,可以通过倍增思想,只考察2的整数次幂位置,快速缩小求解范围,直到找到解。

ST

ST(Spare Table,稀疏表)算法采用了倍增思想,在O(nlogn)时间构造一个二维表后,可以在O(1)的时间内查询[l,r]区间的最值,有效解决RMQ(区间最值查询问题)

实现方法

设F[i,j]表示[i,i+ 2 j 2^j 2j-1]区间的最值,区间长度为 2 j 2^j 2j。初始化ST时,只需要将长度为 2 j 2^j 2j的区间划分为两个长度为 2 j − 1 2^{j-1} 2j1的子区间,然后求两个子区间的最值即可。递推公式F[i,j]=max{F[i,j-1],F[i+ 2 j − 1 2^{j-1} 2j1,j-1]}。

ST创建

数组长度为n;
确定i和j的范围:i=n;
2 k ≤ n < 2 k + 1 2^k \le n \lt 2^{k+1} 2kn<2k+1

c++ log2() 函数表示以2为底的对数

算法代码:
void ST_create(){
//第一列是数组本身
for(…);
//初始化ST
for(int j = 1;j <= k;j++)
for(int i = 1;i<=n-(i<<j)+1;i++)
{F[i][j]=max(F[i][j-1],F[i+(i<<j-1)][j-1])}
}

ST查询

要查询区间[l,r]的最值,则首先要计算k值,区间长度, 2 k ≤ r − l + 1 < 2 k + 1 2^k \le r-l+1 \lt 2^{k+1} 2krl+1<2k+1,然后将查询区间分为两个区间,取两个区间的最值即可,两个区间分别为从l向后的 2 k 2^k 2k个数及从r向前的 2 k 2^k 2k个数,区间可能重叠,但对求最值没有影响。
代码:
int ST_query(int l,int r)
{return max(F[l][k],F[r-(l<<k)+1][k]);}

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值