图论--新的算法介绍

1.定义

佛罗里达算法是解决任意两点间的最短路径的一种算法,可以正确处理无向图或有向图(可以有负权重,但不可存在负权回路)的最短路径问题。

2.和其他算法的区别

Floyd算法与迪杰斯特拉算法或贝尔曼福特算法相比,能够一次性的求出任意两点之间的最短路径,后两种算法运行一次只能计算出给定的起点和终点之间的最短路径。
当然,Floyd算法计算的时间也要高于后两种算法,其算法核心的步骤由三层循环构成。

3.算法的核心

本质是解决最短路径问题:从一个点可以到任意另外一个点。
关键思路是对路径矩阵的不断优化。

  • 如果某个节点在起点到终点的最短路径上,那么从起点到终点的距离等于
    起点到该节点的距离加上该节点到终点的距离。
  • 如果某个节点不在从起点到终点的最短路径的距离,那么从起点到终点的距离小于
    起点到该节点的距离加上该节点到终点的距离。

1 let dist be a |V| × |V| array of minimum distances initialized to ∞ (infinity)
V是顶点的集合, |V|表示顶点的个数,首先我们初始化最小距离矩阵dist,其中每一个元素都
是Inf.
2 for each vertex v
3 dist[v][v] ← 0
将dist矩阵的主对角线元素变为0.(相同的点的最短距离当然是0喽)
4 for each edge (u,v)
5 dist[u][v] ← w(u,v) // the weight of the edge (u,v)
如果u,v两个顶点之间有权重,则用权重更新最短距离矩阵.
(事实上,1‐5步就是在生成一个权重邻接矩阵)
6 for k from 1 to |V|
中间节点k从1‐ |V| 循环
7 for i from 1 to |V|
起始节点i从1‐ |V| 循环
8 for j from 1 to |V|
终点节点j从1‐ |V| 循环
9 if dist[i][j] > dist[i][k] + dist[k][j]
如果i,j两个节点间的最短距离大于i和k的最短距离+k和j的最短距离
10 dist[i][j] ← dist[i][k] + dist[k][j]
那么我们就令这两个较短的距离之和取代i,j两点之间的最短距离
11 end if
结束if循环

参考维基百科和清风数学建模讲解

对于最短距离矩阵的一些处理:
在这里初始化路径矩阵path(里面的每一个元素用终点填充,即path_ij=j,另外,我们可以令主对角线元素为‐1),path是路径矩阵,其元素path_ij表示起点为i,终点为j的两个节点之间的最短路径要经过的节点。同时,在循环后对矩阵的元素进行更新。

4.解决问题的步骤

1,提取图中的信息,得到权重邻接矩阵。

%% 首先将图转换为权重邻接矩阵D
n = 5; %一共五个节点
D = ones(n)./zeros(n); % 全部元素初始化为Inf
for i = 1:n
D(i,i) = 0; % 主对角线元素为0
end
D(1,2) = 3;
D(1,3) = 8;
D(1,5) = -4;
D(2,5) = 7;
D(2,4) = 1;
D(3,2) = 4;
D(4,3) = -5;
D(5,4) = 6;
D(4,1) = 2;

2.调用函数得到结果

%Floyd_algorithm函数求解
[dist,path] = Floyd_algorithm(D)

其中, path是使用floyd算法求出来的路径矩阵,dist是使用floyd算法求出来的最短距离矩阵。
在这里插入图片描述

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值