Abstract: 机器学习中我们希望从数据中挖掘隐含信息或模型,若将图中的结点作为随机变量,连接作为相关性关系,那么我们就能构造出图模型,并期望解决这一问题。而构造这样的概率图模型需要一定的图论知识。本文就总结了图论的基本概念、以及与ML的关系。
图论:以图为研究对象,描述某些事物间的特定关系。由结点与边组成,G = {V,E}。有向边与无向边。有向图与无向图。
ML X 图论:决策树;概率图模型
图论 GRAPH THEORY
关键图:
路:开路,回路,真路,链,闭链
连通图,连通子图,分图
欧拉图,哈密顿图
树,生成树,最小生成树,有向树
二部图
平面图
机器学习与图论
ML: 从数据中挖掘隐含信息与模型
将图中的结点作为随机变量,边(连接)作为相关性关系,则可构造出图模型。
概率图模型(概率论+图论)是实现这一任务的重要手段
决策树:可表示为给定特征条件下类的条件概率分布。
结点:由表示特征的内部结点和表示类的叶节点构成
决策树的学习包括特征的选择、决策树的生成和决策树的剪枝
树型:包含于图论
图论
数学的分支
以图为研究对象,研究顶点和边组成的图形
图数据结构或树型算法:来源于图论
LOOSEY–GOOSEY图
非线性结构:
最基础特征:数据不遵循特有顺序(至少无明显数值关系),类似数组和链表
</