离散数学:理解图论

本文介绍了图论的基础概念,包括图、树、连通图、欧拉图和哈密顿图等,强调了图论在机器学习中的应用,特别是概率图模型和决策树。概率图模型通过将节点视为随机变量,边表示相关性,帮助从数据中挖掘隐含信息和模型。决策树的学习包括特征选择、生成和剪枝,是图论在机器学习中的一个重要实例。
摘要由CSDN通过智能技术生成
 

Abstract: 机器学习中我们希望从数据中挖掘隐含信息或模型,若将图中的结点作为随机变量,连接作为相关性关系,那么我们就能构造出图模型,并期望解决这一问题。而构造这样的概率图模型需要一定的图论知识。本文就总结了图论的基本概念、以及与ML的关系。

图论:以图为研究对象,描述某些事物间的特定关系。由结点与边组成,G = {V,E}。有向边与无向边。有向图与无向图。

树型结构:树是图的一种;从根节点开始,并能和其他结点相连接的图;有向性

ML X 图论:决策树;概率图模型

图论 GRAPH THEORY

关键图:

  • 路:开路,回路,真路,链,闭链

  • 连通图,连通子图,分图

  • 欧拉图,哈密顿图

  • 树,生成树,最小生成树,有向树

  • 二部图

  • 平面图

机器学习与图论

ML: 从数据中挖掘隐含信息与模型

  • 将图中的结点作为随机变量,边(连接)作为相关性关系,则可构造出图模型。

  • 概率图模型(概率论+图论)是实现这一任务的重要手段

决策树:可表示为给定特征条件下类的条件概率分布。

  • 结点:由表示特征的内部结点和表示类的叶节点构成

  • 决策树的学习包括特征的选择、决策树的生成和决策树的剪枝

  • 树型:包含于图论

图论

  • 数学的分支

  • 以图为研究对象,研究顶点和边组成的图形

  • 图数据结构或树型算法:来源于图论

LOOSEY–GOOSEY图

非线性结构:

  • 最基础特征:数据不遵循特有顺序(至少无明显数值关系),类似数组和链表

  • </
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值