python绝对兼容的库配置——机器学习

本文分享了一种确保Python环境兼容性的方法,特别是针对深度学习和机器学习项目。作者提供了个人使用的Python库版本记录,以避免未来出现兼容性问题。
摘要由CSDN通过智能技术生成

先给大家推荐一个:深度学习环境兼容性配置

接下来记录一下我的 python 库的版本,以免以后我自己搞错了…

Package                            Version
---------------------------------- -----------
-eras                              2.2.0
absl-py                            0.9.0
alabaster                          0.7.10
anaconda-client                    1.6.14
anaconda-navigator                 1.8.7
anaconda-project                   0.8.2
asn1crypto                         0.24.0
astor                              0.8.1
astroid                            1.6.3
astropy                            3.0.2
attrs                              18.1.0
Babel                              2.5.3
backcall                           0.1.0
backports.shutil-get-terminal-size 1.0.0
backports.weakref                  1.0rc1
beautifulsoup4                     4.6.0
bitarray                           0.8.1
bkcharts                           0.2
blaze                              0.11.3
bleach                             1.5.0
bokeh                              0.12.16
boto                               2.48.0
Bottleneck                         1.2.1
certifi                            2019.11.28
cffi                               1.11.5
chardet                            3.0.4
click                              6.7
cloudpickle                        0.5.3
clyent                             1.2.2
colorama                           0.3.9
comtypes                           1.1.4
conda                              4.8.3
conda-build                        3.10.5
conda-package-handling             1.6
  • 9
    点赞
  • 27
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值