数学模型
「已注销」
这个作者很懒,什么都没留下…
展开
-
数学建模(11)时间序列分析
数学建模(11)时间序列分析时间序列分析大致可分成三大部分,分别是描述过去、分析规律和预测未来。季节分解、指数平滑方法和ARIMA模型,并将结合Spss软件对时间序列数据 进行建模。要素时间要素:年、季度、月、周、日…数值要素:收入、体重、身高这一类时间分为时期(时间段)和时点(时间点)百度指数可以查趋势,也蛮好玩的。SPSS专家建模器可以自己选择合适的时间预测模型SPSS->分析->时间序列预测->创建传统模型时间序列分解长期变动趋势季节变动规律周期变动规原创 2020-08-16 11:17:38 · 1502 阅读 · 0 评论 -
数学建模(10)聚类模型
数学建模(10)聚类模型聚类可以分成多少类都不清楚,分类可以清楚的写出有几种聚类。K-means聚类K-means聚类流程1、指定需要划分的簇的个数K值(类的个数);2、随机地选择K个数据对象作为初始的聚类中心(不一定要是我们的样本点);3、计算其余的各个数据对象到这K个初始聚类中心的距离,把数据对象划归到距离它最近的那个中心所处在的簇类中﹔4、调整新类并且重新计算出新类的中心;5、循环步骤三和四,看中心是否收敛(不变),如果收敛或达到迭代次数则停止循环;K-means聚类优点快,对于大原创 2020-08-15 17:32:45 · 618 阅读 · 0 评论 -
数学建模(9)分类模型
数学建模(9)分类模型也就是逻辑(logistic)回归或者fisher判别逻辑回归y≥0.5事件发生y<0.5事件不发生所以需要找到一个函数值域在[0,1]之间比如标准正态分布的累计密度函数(称为probitprobitprobit回归)Φ(x)=∫−∞x12πe−t22dt\Phi(x)=\int^x_{-\infty}\frac{1}{\sqrt{2\pi}}e^{-\frac{t^2}{2}}dtΦ(x)=∫−∞x2π1e−2t2dt和SigmoidSigmoidSig原创 2020-08-15 12:29:57 · 2998 阅读 · 0 评论 -
数学建模(8)图论最短路径
数学建模(8)图论最短路径其实图论不仅仅可以看作图论,也可以当作一些事物的联系。可以分出有向图和无向图作图有个作图网站https://csacademy.com/app/graph_editor/Matlab也可以作图,具体作图可以再找其他资料。% 编号从1开始,然后递增,不能随便编号% 需要其他的,加个ps就行了% 如果那个网站可以用,还是那个网站方便s1 = [1,2,3,4];t1 = [2,3,1,1];G1 = graph(s1, t1);plot(G1)权重临界矩阵原创 2020-08-15 09:46:05 · 995 阅读 · 0 评论 -
数学建模(7)回归分析
数学建模(7)回归分析自变量X和因变量Y类型:线性回归、0-1型、定序变量(1很喜欢,2比较喜欢、3不喜欢)、计数变量(访问了几次)、生存变量(寿命)用X来解释Y相关性不等于因果性因变量只有一个,自变量可以有多个。回归的目的1、识别重要变量2、判断相关性的方向3、估计权重(回归系数)可以理解为用X解释Y数据的分类横截面数据:在某一个时间点收集的不同对象的数据时间序列数据:同一个对象在不同时间里观测得到的数据面板数据:把横截面数据和时间序列数据组合对于线性的理解通过变换也可以得原创 2020-08-14 17:04:08 · 1664 阅读 · 0 评论 -
数学建模(6)典型相关性分析
数学建模(6)典型相关性分析研究两组变量之间相关系数的一种多元统计方法,能够揭示两组变量的内在联系。这里的两组,每组都要包含全部的变量,比如一组是男人女人,一组是老人小孩。把多个变量与多个变量之间的相关化为两个具有代表性的变量之间的关系。使用典型相关分析能综合全面的衡量所在组的内在关系步骤1、找出变量的线性组合,让两组之间的线性组合有最大的相关系数。Ui=ai(i)X1(1)+ai(i)X2(2)+...+ai(i)Xp(p)=ai(i)X1(1)U_i=a_i^{(i)}X_1^{(1)}原创 2020-08-14 09:09:04 · 3174 阅读 · 0 评论 -
数学建模(5.5)相关系数_斯皮尔曼相关系数
数学建模(5.5)相关系数_斯皮尔曼相关系数X和Y为两组数据,其斯皮尔曼相关系数为:rs=1−6∑i=1ndi2n(x2−1)r_s=1-\frac{6\sum_{i=1}^nd_i^2}{n(x^2-1)}rs=1−n(x2−1)6∑i=1ndi2其中,did_idi为XiX_iXi和YiY_iYi的等级差,nnn为数字的个数一个数的等级,就是把它所在的一列数按照从小到大排列后,这个数所在的位置。如果有的数值相同,则将他们所在的位置取算数平均。例如一行数字是5、10、8、10、6原创 2020-08-04 14:37:25 · 512 阅读 · 0 评论 -
数学建模(5.4)相关系数_正态分布检验
数学建模(5.4)相关系数_正太分布检验正态分布JB检验要求:数据量大于30。偏度S=E[(X−μσ)3]S=E[(\frac{X-\mu}{\sigma})^3]S=E[(σX−μ)3]偏度为零偏度>0,正偏态。偏度<0,反偏态。skewness(X) %计算偏度峰度KKKkurtosis(X) %计算峰度JB统计量JB=n6[S2+(K−3)24]JB=\frac{n}{6}[S^2+\frac{(K-3)^2}{4}]JB=6n[S2+4(K−3)2]如果是原创 2020-08-04 10:25:10 · 1934 阅读 · 0 评论 -
数学建模(5.3)相关系数_皮尔逊相关系数假设检验
数学建模(5.3)相关系数_皮尔逊相关系数假设检验对于相关系数大小的解释原创 2020-08-04 10:24:27 · 1589 阅读 · 0 评论 -
数学建模(5.2)相关系数_假设检验
数学建模(5.2)相关系数_假设检验原假设有一定概率落在在临界值之内,原假设的概率成立,表示置信水平可以达到假设检验标准步骤1、确定原假设H0H_0H0和备择假设H1H_1H12、构造一个正态分布标准化3、画概率密度函数4、和置信水平β\betaβ比较概率密度函数P(a≤X≤b)=∫abf(x)dxP(a\leq X\leq b)=\int_a^bf(x)dxP(a≤X≤b)=∫abf(x)dx累计密度函数F(x)=P(X≤x)=∫−∞xf(x)dxF(x)=P(X\leq x)原创 2020-08-04 09:17:18 · 1017 阅读 · 0 评论 -
数学建模(5.1)相关系数
数学建模(5)相关系数两个数据中相关性的指标总体和样本总体数据总体均值:E(X)=∑i=1nXinE(X)=\frac{\sum_{i=1}^{n}X_i}{n}E(X)=n∑i=1nXiE(Y)=∑i=1nYinE(Y)=\frac{\sum_{i=1}^{n}Y_i}{n}E(Y)=n∑i=1nYi总体协方差:Cov(X,Y)=∑i=1n(Xi−E(X)(Yi−E(Y))nCov(X,Y)=\frac{\sum_{i=1}^n(X_i-E(X)(Y_i-E(Y))}{n}Co原创 2020-08-04 09:00:30 · 504 阅读 · 0 评论 -
数学建模(4)拟合算法
数学建模(4)拟合算法和插值比较插值经过所有样本点,多项式次数过高,可能会有龙格现象,结果可能比较复杂。拟合与样本点足够接近,得到确定的曲线,结果比较简单。最小二乘法例如是个直线,使用y=kx+by=kx+by=kx+bk^,b^=argmin(∑i=1n(yi−yi^)2)\widehat{k},\widehat{b}=argmin(\sum_{i=1}^n(y_i-\widehat{y_i})^2)k,b=argmin(i=1∑n(yi−yi)2)也可以不使用平方,使用绝对值,但是原创 2020-08-01 23:36:40 · 666 阅读 · 0 评论 -
数学建模(3)插值算法
数学建模(3)插值算法用途数据较少的时候,用已有的数据来找到两个数据之间的值一维的插值分段插值插值多项式三角插值插值的原理y=a0+a1x+a2x2+...+anxny=a_0+a_1x+a_2x^2+...+a_nx^ny=a0+a1x+a2x2+...+anxn$只要有n+1个互不相同的节点$如果不限制多项式的次数,多项式不唯一AX=YAX=YAX=YA是参数矩阵(A是范德蒙行列式),X是自变量,Y是因变量因为∣A∣=∏i=1n∏j=0n−1(xi−j)≠0|A|=\p原创 2020-08-01 20:09:33 · 397 阅读 · 0 评论 -
数学建模(2)Topsis
数学建模(2)Topsis逼近理想解、优劣解距离法指标正向化所有指标都要改成极大型指标极小型指标:max−xmax-xmax−x中间型指标:xbestx_{best}xbest是最优的M=max{∣xi−xbest∣}M=max\{|x_i-x_{best}|\}M=max{∣xi−xbest∣}xi^=1−∣xi−xbest∣M\widehat{x_i}=1-\frac{|x_i-x_{best}|}{M}xi=1−M∣xi−xbest∣区间型指标:在[a,b]之间是最优原创 2020-08-01 17:47:12 · 379 阅读 · 0 评论 -
数学建模(1)层次分析
数学建模(1)层次分析对于一个问题的各种选项,求解最优秀选项的算法写判断矩阵先确定五个指标的权重1-9表示重要程度,数字越大越重要,如果是倒数,就是反过来理解写出判断矩阵,可能出现前后不一致的情况,所以需要判断一致性。只要满足各行(各列)成倍数关系,则是一致矩阵。进行一致性检验特征值法判断矩阵越不一致,最大特征值与标准的数量n差别越大再求一致性指标CI和一致性比例CR1、CI:CI=λmax−nn−1CI= \frac{\lambda_{max}-n}{n-1}CI=n−1λmax原创 2020-08-01 08:31:30 · 1578 阅读 · 0 评论 -
数学建模上课(一)推导万有引力定律
数学建模上课(一)推导万有引力定律开始的开始万有引力的推导,是一个伟大而且美丽的过程,他承接着前人的研究成果,为后世开辟的新的天地。一顿操作牛顿三定律这里主要用到牛顿第二定律F⃗=ma⃗\vec{F} = m\vec{a}F=ma开普勒三定律我们先来看一看开普勒三定律可以得出什么结论:1、开普勒第一定律:行星围绕太阳转动轨迹是椭圆,太阳在椭圆的一个焦点上。把恒星行星放到极坐标...原创 2020-02-23 10:26:15 · 5490 阅读 · 5 评论 -
数学建模课(0)瞎说ᶘ ͡°ᴥ͡°ᶅ
数学建模课记录(零)瞎说ᶘ ͡°ᴥ͡°ᶅ数学建模课开始了,简单认识一下数学模型的魅力。虽然大一的时候已经参与过两次建模比赛,但是实力是真的菜。第一次建模之后只是写完了论文就感觉自己牛逼的要死。第二次建模,两位大佬带我拿了个国二,可是我自己做出的贡献实在太少。这一次上课,必须得真的学到东西,必须要真的自己carry一次,必须弄懂每一个算法每一行代码每一个单词。在这里记录一下自己学到的东西...原创 2020-02-22 22:18:06 · 368 阅读 · 0 评论