数学建模上课(一)推导万有引力定律
开始的开始
万有引力的推导,是一个伟大而且美丽的过程,他承接着前人的研究成果,为后世开辟的新的天地。
一顿操作
牛顿三定律
这里主要用到牛顿第二定律
F ⃗ = m a ⃗ \vec{F} = m\vec{a} F=ma
开普勒三定律
我们先来看一看开普勒三定律可以得出什么结论:
1、开普勒第一定律:
行星围绕太阳转动轨迹是椭圆,太阳在椭圆的一个焦点上。
把恒星行星放到极坐标中,恒星为原点。
r = p 1 − e c o s θ r = \frac{p}{1-ecos\theta} r=1−ecosθp
其中焦参数为
p = b 2 a p=\frac{b^2}{a} p=ab2
离心率为
e = 1 − b 2 a 2 e = \sqrt{1-\frac{b^2}{a^2}} e=1−a2b2
椭圆长轴a,短轴b.
设
{ r = r ( t ) θ = θ ( t ) \left\{\begin{matrix} r=r(t)\\ \theta=\theta(t) \end{matrix}\right. {
r=r(t)θ=θ(t)
对于r求导,得到径向速度 r ˙ \dot{r} r˙
d r d t = r ˙ \frac{dr}{dt}=\dot{r} dtdr=r˙
径向加速度 r ¨ \ddot{r} r¨
d 2 r d t 2 = r ¨ \frac{d^2r}{dt^2}=\ddot{r} dt2d2r=r¨
对于 θ \theta θ求导,得到角速度 ω \omega ω
d θ d t = ω \frac{d\theta}{dt}=\omega dtdθ=ω
角加速度 ω ˙ \dot{\omega} ω˙
d ω d t = ω ˙ \frac{d\omega}{dt}=\dot{\omega} dtdω=ω˙
换一种坐标系,笛卡尔坐标系,行星坐标为
r ⃗ = ( r c o s θ , r s i n θ ) \vec{r}=(rcos\theta,rsin\theta) r=(rcosθ,rsinθ)
所以
F ⃗ = m a ⃗ = d r ⃗ 2 d 2 t \vec{F} = m\vec{a}=\frac{d\vec{r}^2}{d^2t} F=ma=d2tdr