数理逻辑小结4——PC定理补充证明

PC 命题逻辑系统相关定理

写在前面

我们首先拥有命题的概念,即判断一个句子为真或为假,随后通过对命题的符号化以及联结词的使用抽象了生活中的命题,构造出了符号化的复合命题。再往后,我们使用命题公式进一步抽象复合命题,递归地定义了命题公式的形式以及命题公式的值,并针对命题公式定义了诸多概念。可以发现,命题公式与命题是一一对应的,只是命题公式更加的数学化,便于数学处理。

另一方面,针对生活中的句子,我们也进行了数学化。我们定义了形式语言,即建立在给定字符集上的字符串,我们称之为形式语言。可是这样的字符串是毫无意义的,必须通过语法对字符串进行约束。而 PC 就是这样一个建立在字符集上的语言。我们定义了其字母表以及构成的语法,即什么样的字符串可以认为是 PC 中的语言,称每一条语句为一个公式。

在 PC 中,我们挑选了 3 种基础的公式形式(即 3 条公理),定义了推导的规则(即证明),可以通过这 3 条基本公理,以计算机能够处理的、字符串的形式来推导出若干较特殊的公式形式,我们称之为定理。定理与公理是 一种公式模板,代表了所有满足该类模板的 PC 公式的子集。比如公理形式为 A → ( B → A ) A\to(B\to A) A(BA) ,那么 B → ( A → B ) B\to(A\to B) B(AB) 满足该形式, ( A → B ) → ( ( A → C ) → ( A → B ) ) (A\to B)\to((A\to C)\to(A\to B)) (AB)((AC)(AB)) 也满足该公理形式。我们称这些模板,或满足这些模板的所有公式为公理或定理。

如果我们在 3 条公理(或公理模板)的基础上,给定公式集 Γ \Gamma Γ,定义类似的推导规则(即演绎),也可以得到若干 PC 中的公式,我们称这些公式为 Γ \Gamma Γ 在 PC 中的演绎结果,这些公式都是在 Γ \Gamma Γ 的基础上,通过模板形式的推导演绎得来的。

在上述定义基础上,我们根据 3 条公理推导出了 35 条基础定理,以方便我们的证明与推导。同时我们给出了 PC 命题演算形式系统(上述形式语言的全称)的定理(非上述定理模板)与性质。演绎定理、PC 的合理性、PC 的一致性、PC 的不完全性、PC 的完备性。

此外,不难发现,PC 中所有公式都满足命题公式的形式,因此 PC 中公式也满足命题公式的相关性质。

在该篇文章中,只记录课堂上 PC 的相关定理的证明。证明来源任世军老师课件以及课堂讲述内容。

PC 相关定义

定义1 公式集的一致性

Γ \Gamma Γ 是 PC 的一个公式集,如果不存在 PC 的公式 A A A,使得 Γ ⊢ A \Gamma\vdash A ΓA Γ ⊢ ¬ A \Gamma\vdash\neg A Γ¬A 同时成立,则称 Γ \Gamma Γ 是一个一致的公式集。

定义2 公式集的完全性

Γ \Gamma Γ 是 PC 的一个公式集,如果对任意的公式 A A A Γ ⊢ A \Gamma\vdash A ΓA Γ ⊢ ¬ A \Gamma\vdash\neg A Γ¬A 必有一个成立,则称 Γ \Gamma Γ 是一个完备的公式集。

PC 相关定理

PC性质和定理内容
演绎定理对 PC 中任意公式集合 Γ \Gamma Γ 和公式 A A A Γ ; A ⊢ B \Gamma;A\vdash B Γ;AB 当且仅当 Γ ⊢ A → B \Gamma\vdash A\to B ΓAB
PC 的合理性对 PC 中任意公式集合 Γ \Gamma Γ 和公式 A A A,如果 Γ ⊢ A \Gamma\vdash A ΓA,则 Γ ⇒ A \Gamma\Rightarrow A ΓA
PC 的一致性不存在公式 A A A,使得 A A A ¬ A \neg A ¬A 都为 PC 中的定理
PC 的不完全性存在公式 A A A,使得 ⊢ ¬ A \vdash\neg A ¬A ⊢ A \vdash A A
PC 的完备性对 PC 中任意公式集合 Γ \Gamma Γ 和公式 A A A,如果 Γ ⇒ A \Gamma\Rightarrow A ΓA,则 Γ ⊢ A \Gamma\vdash A ΓA

定理1 演绎定理

对 PC 中任意公式集合 Γ \Gamma Γ 和公式 A A A B B B Γ ∪ { A } ⊢ P C B \Gamma\cup\{A\}\vdash_{PC}B Γ{A}PCB 当且仅当 Γ ⊢ P C A → B \Gamma\vdash_{PC}A\to B ΓPCAB

证明:

定义符号如下:
Γ ∪ { A } = d e f Γ ; A \Gamma\cup\{A\}\mathop{=}\limits^{def}\Gamma;A Γ{A}=defΓ;A

Γ ∪ { A , B , C } = d e f Γ ; A , B , C \Gamma\cup\{A,B,C\}\mathop{=}\limits^{def}\Gamma;A,B,C Γ{A,B,C}=defΓ;A,B,C

即证
Γ ; A ⊢ B i f f Γ ⊢ A → B \Gamma;A\vdash B\quad iff\quad \Gamma\vdash A\to B Γ;ABiffΓAB

  • 充分性证明:已知 Γ ⊢ A → B \Gamma\vdash A\to B ΓAB,求证 Γ ; A ⊢ B \Gamma;A\vdash B Γ;AB

    可以在 Γ ⊢ A → B \Gamma\vdash A\to B ΓAB 的演绎序列中添加 A A A,根据 r m p rmp rmp 规则得到 Γ ; A ⊢ B \Gamma;A\vdash B Γ;AB

  • 必要性证明:已知 Γ ; A ⊢ B \Gamma;A\vdash B Γ;AB,求证 Γ ⊢ A → B \Gamma\vdash A\to B ΓAB

    假设 Γ ; A ⊢ B \Gamma;A\vdash B Γ;AB 对应的演绎序列为 A 1 , A 2 , ⋯   , A m A_1,A_2,\cdots,A_m A1,A2,,Am,根据数学归纳法进行证明

    1. m = 1 m=1 m=1 时,该演绎序列中仅有 B B B,通过公理1或定理1易得 Γ ⊢ A → B \Gamma\vdash A\to B ΓAB
    2. 假设当 m < n m<n m<n 时结论成立。当 m = n m=n m=n 时, Γ ; A ⊢ B \Gamma;A\vdash B Γ;AB 对应的演义序列为 A 1 , A 2 , ⋯   , A n ( = B ) A_1,A_2,\cdots,A_n(=B) A1,A2,,An(=B)
      • B B B 为公理、 Γ \Gamma Γ 中元素或 B = A B=A B=A 时,根据公理1或定理1易得 Γ ⊢ A → B \Gamma\vdash A\to B ΓAB
      • B B B A j A_j Aj j < n j<n j<n 时,根据归纳假设,易得 Γ ⊢ A → B \Gamma\vdash A\to B ΓAB
      • B B B 为根据 r m p rmp rmp 分离出的公式时,假设 Γ ; A ⊢ A j \Gamma;A\vdash A_j Γ;AAj Γ ; A ⊢ A j → B \Gamma;A\vdash A_j\to B Γ;AAjB,其中 j < n j<n j<n,由归纳假设可得 Γ ⊢ A → A j \Gamma\vdash A\to A_j ΓAAj Γ ⊢ A → ( A j → B ) \Gamma\vdash A\to(A_j\to B) ΓA(AjB),根据公理2易得 Γ ⊢ A → B \Gamma\vdash A\to B ΓAB

证明完毕

演绎定理的应用

例1,试证明 ⊢ ( A → ( B → C ) ) → ( ( C → D ) → ( A → ( B → D ) ) ) \vdash(A\to(B\to C))\to((C\to D)\to(A\to(B\to D))) (A(BC))((CD)(A(BD)))

只需证 A → ( B → C ) ⊢ ( C → D ) → ( A → ( B → D ) ) A\to(B\to C)\vdash(C\to D)\to(A\to(B\to D)) A(BC)(CD)(A(BD))

只需证 A → ( B → C ) , C → D ⊢ A → ( B → D ) A\to(B\to C),C\to D\vdash A\to(B\to D) A(BC),CDA(BD)

只需证 A → ( B → C ) , C → D , A ⊢ B → D A\to (B\to C),C\to D,A\vdash B\to D A(BC),CD,ABD

只需证 A → ( B → C ) , C → D , A , B ⊢ D A\to (B\to C),C\to D,A,B\vdash D A(BC),CD,A,BD

一直使用 r m p rmp rmp 即可证明 A → ( B → C ) , C → D , A , B ⊢ D A\to (B\to C),C\to D,A,B\vdash D A(BC),CD,A,BD,从而 ⊢ ( A → ( B → C ) ) → ( ( C → D ) → ( A → ( B → D ) ) ) \vdash(A\to(B\to C))\to((C\to D)\to(A\to(B\to D))) (A(BC))((CD)(A(BD))) 得证

例2,试证明 ⊢ ( ( A → B ) → ( A → C ) ) → ( A → ( B → C ) ) \vdash ((A\to B)\to(A\to C))\to(A\to(B\to C)) ((AB)(AC))(A(BC))

只需证 ( A → B ) → ( A → C ) ⊢ A → ( B → C ) (A\to B)\to(A\to C)\vdash A\to(B\to C) (AB)(AC)A(BC)

只需证 ( A → B ) → ( A → C ) , A , B ⊢ C (A\to B)\to(A\to C),A,B\vdash C (AB)(AC),A,BC

同样易证

定理2 PC的合理性

PC 是合理的,即对任意公式 Γ \Gamma Γ 和公式 A A A,如果 Γ ⊢ A \Gamma\vdash A ΓA,则 Γ ⇒ A \Gamma\Rightarrow A ΓA。特别是如果 A A A 为 PC 中的定理 ⊢ A \vdash A A,则 A A A 永真。

证明:

Γ ⊢ A \Gamma\vdash A ΓA 对应的演绎序列为 A 1 , A 2 , ⋯   , A m ( = A ) A_1,A_2,\cdots,A_m(=A) A1,A2,,Am(=A),针对 m m m 应用数学归纳法。

  1. m = 1 m=1 m=1
    • A A A 为公理, A A A 为永真式,故有 Γ ⇒ A \Gamma\Rightarrow A ΓA
    • A ∈ Γ A\in\Gamma AΓ,则显然有 Γ ⇒ A \Gamma\Rightarrow A ΓA
  2. 假设当 m < n m<n m<n 时,定理2 成立,则当 m = n m=n m=n
    • A A A 为公理,显然
    • A ∈ Γ A\in\Gamma AΓ 显然
    • A = A j A=A_j A=Aj j < n j<n j<n,由归纳假设可知 Γ ⇒ A \Gamma\Rightarrow A ΓA
    • A k = A j → A A_k=A_j\to A Ak=AjA j < k < n j < k < n j<k<n (此处 j j j k k k 顺序可以颠倒),根据归纳假设有 Γ ⇒ A j \Gamma\Rightarrow A_j ΓAj Γ ⇒ A j → A \Gamma\Rightarrow A_j\to A ΓAjA,建立方程 A j v = ( A j → A ) v = 1 A_j^v=(A_j\to A)^v=1 Ajv=(AjA)v=1,展开求解可得 A = 1 A=1 A=1 ,故有 Γ ⇒ A \Gamma\Rightarrow A ΓA

定理3 PC 的一致性

PC 是一致的,即不存在 A A A,使得 A A A ¬ A \neg A ¬A 均为 PC 中的定理。

证明:

使用反证法进行证明。假设 ∃ A ⊢ A    a n d    ⊢ ¬ A \exist A\quad\vdash A\,\,and\,\,\vdash\neg A AAand¬A,由 PC 的合理性可知 A A A ¬ A \neg A ¬A 都为永真式,矛盾。

定理4 PC 的不完全性

PC 不是完全的,即存在公式 A A A,使得 ⊢ A \vdash A A ⊢ ¬ A \vdash\neg A ¬A 均不能成立。

证明:

根据 PC 的合理性可知,PC 最多只能判断永真式和永假式,而对于其他式子无法进行判断。

实际上,PC 可以判断所有的永真式和永假式,这一点需要依靠 PC 的完备性定理

定理5 PC 的完备性

PC 是完备的,即对任意公式集合 Γ \Gamma Γ 和公式 A A A,如果 Γ ⇒ A \Gamma\Rightarrow A ΓA,那么 Γ ⊢ A \Gamma\vdash A ΓA。特别地,如果 ⇒ A \Rightarrow A A,即 A A A 永真,那么 ⊢ A \vdash A A 是 PC 中的一个定理。

要证明该定理,可以分为下方五个子命题进行求证。

命题1

如果 Γ \Gamma Γ 一致, Γ ⊬ A \Gamma\not\vdash A ΓA,那么 Γ ∪ { ¬ A } \Gamma\cup\{\neg A\} Γ{¬A} 也是一致的

证明:

假设 Γ ∪ { ¬ A } \Gamma\cup\{\neg A\} Γ{¬A} 不一致,则存在公式 $B $ 使得
Γ ∪ { ¬ A } ⊢ B Γ ∪ { ¬ A } ⊢ ¬ B \begin{aligned} &\Gamma\cup\{\neg A\}\vdash B\\ &\Gamma\cup\{\neg A\}\vdash \neg B\\ \end{aligned} Γ{¬A}BΓ{¬A}¬B
由演绎定理可知
Γ ⊢ ¬ A → B Γ ⊢ ¬ A → ¬ B \begin{aligned} &\Gamma\vdash\neg A\to B\\ &\Gamma\vdash\neg A\to \neg B\\ \end{aligned} Γ¬ABΓ¬A¬B
根据定理 16,易得 Γ ⊢ A \Gamma\vdash A ΓA,与假设矛盾,证明完毕。

命题2

如果 Γ \Gamma Γ 一致, Γ ⊢ A \Gamma\vdash A ΓA,那么 Γ ∪ { A } \Gamma\cup\{A\} Γ{A} 也是一致的

证明:

与上述思路一致,证明略。

命题3

如果 Γ \Gamma Γ 一致,那么存在公式集合 Δ \Delta Δ,使得 Γ ⊆ Δ \Gamma\subseteq\Delta ΓΔ Δ \Delta Δ 是一致的并且 Δ \Delta Δ 是完全的

证明:

  1. 构造如下公式集 Δ \Delta Δ

    假设 A 0 , A 1 , ⋯   , A n , ⋯ A_0,A_1,\cdots,A_n,\cdots A0,A1,,An, 是 PC 中所有公式,那么可构造如下公式集合序列

    1. Δ 0 = Γ \Delta_0=\Gamma Δ0=Γ

    2. Δ n + 1 = { Δ n ∪ { A n } i f    Δ n ⊢ A n Δ n ∪ { ¬ A n } i f    Δ n ⊬ A n \Delta_{n+1}= \begin{cases} \Delta_n\cup\{A_n\}\quad if\,\,\Delta_n\vdash A_n\\ \Delta_n\cup\{\neg A_n\}\quad if\,\,\Delta_n\not\vdash A_n \end{cases} Δn+1={Δn{An}ifΔnAnΔn{¬An}ifΔnAn

    最后令 Δ = l i m n → ∞ Δ n \Delta=\mathop{lim}\limits_{n\to\infty}\Delta_n Δ=nlimΔn

  2. 证明 Δ \Delta Δ 具有完全性

    对于 PC 中任意公式 A i A_i Ai,若 Δ i ⊢ A i \Delta_i\vdash A_i ΔiAi,则 Δ ⊢ A i \Delta\vdash A_i ΔAi,若 Δ i ⊬ A i \Delta_i\not\vdash A_i ΔiAi,则 Δ ⊢ ¬ A i \Delta\vdash\neg A_i Δ¬Ai

  3. 证明 Δ \Delta Δ 具有一致性

    首先由命题1、2可知,任意 Δ i \Delta_i Δi 都是一致的,但无法确定 Δ ∞ \Delta_\infty Δ 是否一致,因此采用无限化有限的思路。对于任意公式 A A A,若 Δ ⊢ A \Delta\vdash A ΔA,则存在 Δ n ⊢ A \Delta_n\vdash A ΔnA。则对于 A A A ¬ A \neg A ¬A,假设 Δ ⊢ A \Delta\vdash A ΔA 并且 Δ ⊢ ¬ A \Delta\vdash \neg A Δ¬A,则有 Δ n ⊢ A \Delta_n\vdash A ΔnA Δ m ⊢ ¬ A \Delta_m\vdash\neg A Δm¬A,取 k = m a x { n , m } k=max\{n,m\} k=max{n,m},则易得 Δ k ⊢ A \Delta_k\vdash A ΔkA Δ k ⊢ ¬ A \Delta_k\vdash\neg A Δk¬A,与 Δ k \Delta_k Δk 具有一致性矛盾

证明完毕

命题4

上面构造的公式集合 Δ \Delta Δ 有如下性质,任意公式 A A A A ∈ Δ A\in\Delta AΔ 当且仅当 Δ ⊢ A \Delta\vdash A ΔA

证明:

必要性显然,下证充分性,即若 Δ ⊢ A \Delta\vdash A ΔA A ∈ Δ A\in\Delta AΔ

  1. 存在 Δ i \Delta_i Δi 使得 Δ i ⊢ A j \Delta_i\vdash A_j ΔiAj
  2. i ≤ j i\leq j ij,则 Δ j ⊢ A j \Delta_j\vdash A_j ΔjAj,那么 Δ j + 1 = Δ j ∪ { A j } \Delta_{j+1}=\Delta_j\cup\{A_j\} Δj+1=Δj{Aj},进而 A ∈ Δ A\in\Delta AΔ
  3. i > j i>j i>j,则 Δ j ⊢ A j \Delta_j\vdash A_j ΔjAj,否则 Δ j + 1 = Δ j ∪ { ¬ A j } \Delta_{j+1}=\Delta_j\cup\{\neg A_j\} Δj+1=Δj{¬Aj},进而 Δ ⊢ ¬ A j \Delta\vdash\neg A_j Δ¬Aj,与 Δ \Delta Δ 的一致性矛盾。从而 A ∈ Δ A\in\Delta AΔ
命题5

Γ \Gamma Γ 是 PC 的一致公式集合,那么存在一个指派 ∂ \partial ,使得对任意公式 A ∈ Γ A\in\Gamma AΓ,都有 A ∂ = 1 A^{\partial}=1 A=1

**证明:**设 Δ \Delta Δ 为上述命题构造的公式集合, Γ ⊆ Δ \Gamma\subseteq\Delta ΓΔ Δ \Delta Δ 一致且完全。定义映射 σ \sigma σ 如下
A σ = { 1 A ∈ Δ 0 A ∉ Δ A^\sigma= \begin{cases} 1&A\in\Delta\\ 0&A\not\in\Delta \end{cases} Aσ={10AΔAΔ

  1. Δ \Delta Δ 一致且完全,因此对于任意公式 A A A,有 Δ ⊢ A \Delta\vdash A ΔA Δ ⊢ ¬ A \Delta\vdash\neg A Δ¬A,根据命题 4,得 A ∈ Δ ¬ A ∉ Δ A\in\Delta\quad\neg A\not\in\Delta AΔ¬AΔ ¬ A ∈ Δ A ∉ Δ \neg A\in\Delta\quad A\not\in\Delta ¬AΔAΔ。因此始终保证任意 A A A 都有对应的映射值,且唯一。
  2. 1 易知, ( ¬ A ) σ = 1 − A σ (\neg A)^\sigma=1-A^\sigma (¬A)σ=1Aσ,同样,根据映射的定义,可以推导得到 ( A → B ) σ = 1 − A σ + A σ B σ (A\to B)^\sigma=1-A^\sigma+A^\sigma B^\sigma (AB)σ=1Aσ+AσBσ。进而可以发现该映射与命题公式的指派含义相同。
  3. σ ′ = σ ∣ A t o m ( L p ) \sigma'=\sigma|_{Atom(L^p)} σ=σAtom(Lp),则对于 PC 中任意公式 A A A,都有 A σ ′ = A σ A^{\sigma'}=A^\sigma Aσ=Aσ。(此处老师未证明)

PC 完备性定理的证明:

回忆PC完备性定理, A A A 为 PC 中公式, Γ \Gamma Γ 为 PC 中公式集合, Γ ⇒ A \Gamma\Rightarrow A ΓA,那么 Γ ⊢ A \Gamma\vdash A ΓA。如果 Γ \Gamma Γ 不一致,则 $\Gamma $ 可以演绎 PC 中所有公式,故有 Γ ⊢ A \Gamma\vdash A ΓA(使用定理 9 和定理 11)。如果 Γ \Gamma Γ 一致,假设 Γ ⊬ A \Gamma\not\vdash A ΓA,则 Γ ; ¬ A \Gamma;\neg A Γ;¬A 也一致,由命题 5 可知,存在指派 ∂ \partial 弄真 Γ ; ¬ A \Gamma;\neg A Γ;¬A 中所有公式,则该指派弄真 Γ \Gamma Γ 但弄假 ¬ A \neg A ¬A,矛盾。

定理6 公式集的一致性和可满足性

PC 的公式集合 Γ \Gamma Γ 是一致的当且仅当它是可满足的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值