从二项分布到伽马分布

从二项分布到伽马分布

二项分布

二项分布是指 n n n 个独立的伯努利试验中成功次数的离散概率分布,其中每次试验的成功概率为 p p p

P ( X = k ) = f ( k , n , p ) = ( n k ) p k ( 1 − p ) n − k P(X=k)=f(k, n, p)=\begin{pmatrix}n\\k\end{pmatrix}p^k(1 - p)^{n-k} P(X=k)=f(k,n,p)=(nk)pk(1p)nk

  • k k k:成功的次数
  • n n n:总的试验次数
  • p p p:单词试验成功的次数

泊松分布

当二项分布试验的次数无穷多,但试验成功的总次数固定时,二项分布收敛于泊松分布。
P ( X = k ) = e − λ k ! P(X=k)=\frac{e^{-\lambda}}{k!} P(X=k)=k!eλ
实际意义为一段时间内试验成功的平均次数为 λ \lambda λ,则同样的时间段内试验成功 k k k 次的概率。

简记为 X ∼ π ( λ ) X\sim\pi(\lambda) Xπ(λ) X ∼ P o i s ( λ ) X\sim Pois(\lambda) XPois(λ)

推导:

  • 已知某一固定时间长度 T T T 内,平均会发生 λ \lambda λ 次事件

  • 将时间长度分为 n n n 份,每一小段时间段 T n \frac{T}{n} nT 发生事件的概率为 p = λ n p=\frac{\lambda}{n} p=nλ

  • 则时间长度 T T T 内,有 k k k 次事件发生的概率为
    P ( X = k ) = ( n k ) ( λ n ) k ( 1 − λ n ) n − k P(X=k)=\begin{pmatrix}n\\k\end{pmatrix}(\frac{\lambda}{n})^k(1-\frac{\lambda}{n})^{n-k} P(X=k)=(nk)(nλ)k(1nλ)nk
    将时间无限细分,得到
    P ( X = k ) = lim ⁡ n → ∞ ( n k ) ( λ n ) k ( 1 − λ n ) n − k = lim ⁡ n → ∞ n ! ( n − k ) ! k ! ( λ n ) k ( 1 − λ n ) n ( 1 − λ n ) − k = lim ⁡ n → ∞ n ! ( n − k ) ! k ! ( λ n ) k ( 1 − λ n ) n = lim ⁡ n → ∞ n ! ( n − k ) ! n k λ k k ! lim ⁡ n → ∞ ( 1 − λ n ) n = ( lim ⁡ n → ∞ n ! ( n − k ) ! n k ) ( λ k k ! e − λ ) = ( lim ⁡ n → ∞ n n n − 1 n ⋯ n − k + 1 n ) ( λ k k ! e − λ ) = λ k k ! e − λ \begin{align} P(X=k)&=\lim_{n\to\infin}\begin{pmatrix}n\\k\end{pmatrix}(\frac{\lambda}{n})^k(1-\frac{\lambda}{n})^{n-k}\\ &=\lim_{n\to\infin}\frac{n!}{(n-k)!k!}(\frac{\lambda}{n})^k(1-\frac{\lambda}{n})^n(1-\frac{\lambda}{n})^{-k}\\ &=\lim_{n\to\infin}\frac{n!}{(n-k)!k!}(\frac{\lambda}{n})^k(1-\frac{\lambda}{n})^n\\ &=\lim_{n\to\infin}\frac{n!}{(n-k)!n^k}\frac{\lambda^k}{k!}\lim_{n\to\infin}(1-\frac{\lambda}{n})^n\\ &=(\lim_{n\to\infin}\frac{n!}{(n-k)!n^k})(\frac{\lambda^k}{k!}e^{-\lambda})\\ &=(\lim_{n\to\infin}\frac{n}{n}\frac{n-1}{n}\cdots\frac{n-k+1}{n})(\frac{\lambda^k}{k!}e^{-\lambda})\\ &=\frac{\lambda^k}{k!}e^{-\lambda} \end{align} P(X=k)=nlim(nk)(nλ)k(1nλ)nk=nlim(nk)!k!n!(nλ)k(1nλ)n(1nλ)k=nlim(nk)!k!n!(nλ)k(1nλ)n=nlim(nk)!nkn!k!λknlim(1nλ)n=(nlim(nk)!nkn!)(k!λkeλ)=(nlimnnnn1nnk+1)(k!λkeλ)=k!λkeλ

指数分布

表示独立随机事件发生的时间间隔,形式如下
f ( x , λ ) = { λ e − λ x , x > = 0 0 , o t h e r w i s e f(x,\lambda)=\begin{cases} \lambda e^{-\lambda x},&x>=0\\ 0,&otherwise \end{cases} f(x,λ)={λeλx,0,x>=0otherwise
实际意义为已知单位时间内事件的发生次数 λ \lambda λ X X X 表示从某一次事件发生之后,第 1 1 1 次事件再次发生所经历的时间。

简记为 X ∼ Exp ( λ ) X\sim\text{Exp}(\lambda) XExp(λ)

推导:

  • 已知单位时间内,会发生 λ \lambda λ 次事件
  • 那么单位时间内,发生 Y Y Y 次事件的概率分布满足 Y ∼ π ( λ ) Y\sim\pi(\lambda) Yπ(λ)
  • 则单位时间内,一次事件也没有发生的概率为 P ( Y = 0 ) = λ 0 0 ! e − λ = e − λ P(Y=0)=\frac{\lambda^0}{0!}e^{-\lambda}=e^{-\lambda} P(Y=0)=0!λ0eλ=eλ
  • 那么 x x x 个单位时间内,其 λ ′ = λ x \lambda'=\lambda x λ=λx,则一次事件也没有发生的概率为 e − λ x e^{-\lambda x} eλx
  • P ( X > x ) = e − λ x P(X>x)=e^{-\lambda x} P(X>x)=eλx,其中 X X X 为上一次事件发生之后,到下一次事件发生所经过的时间
  • P ( X ≤ x ) = 1 − e − λ x P(X\leq x)=1-e^{-\lambda x} P(Xx)=1eλx
  • 则概率密度函数 f ( x ) = ( 1 − e − λ x ) ′ = λ e − λ x f(x)=(1-e^{-\lambda x})'=\lambda e^{-\lambda x} f(x)=(1eλx)=λeλx

伽马分布

假设 X 1 , X 2 , ⋯   , X n X_1,X_2,\cdots,X_n X1,X2,,Xn 为连续发生事件的等候时间,则 n n n 次等候时间之和 Y = ∑ i = 1 n X i Y=\sum_{i=1}^nX_i Y=i=1nXi 满足伽马分布
f ( x , α , λ ) = x ( α − 1 ) λ α e ( − λ x ) Γ ( α ) f(x,\alpha,\lambda)=\frac{x^{(\alpha-1)}\lambda^\alpha e^{(-\lambda x)}}{\Gamma(\alpha)} f(x,α,λ)=Γ(α)x(α1)λαe(λx)

f ( x , α , β ) = x ( α − 1 ) e ( − 1 β x ) β α Γ ( α ) f(x,\alpha,\beta)=\frac{x^{(\alpha-1)} e^{(-\frac{1}{\beta} x)}}{\beta^\alpha\Gamma(\alpha)} f(x,α,β)=βαΓ(α)x(α1)e(β1x)
其中 β = 1 λ \beta=\frac{1}{\lambda} β=λ1

实际意义为已知单位时间内事件平均发生次数为 λ \lambda λ X X X 表示从某一次事件发生之后,第 α \alpha α 次事件发生所经历的时间。

简记为 X ∼ Γ ( α , λ ) X\sim\Gamma(\alpha,\lambda) XΓ(α,λ)

伽马函数介绍:

其中 Γ ( x ) \Gamma(x) Γ(x) 为伽马函数,其形式为
Γ ( z ) = ∫ 0 ∞ x z − 1 e − x d x \Gamma(z)=\int_0^\infin x^{z-1}e^{-x}dx Γ(z)=0xz1exdx
通过分步积分可得
Γ ( z ) = ∫ 0 ∞ x z − 1 e − x d x = ∫ 0 ∞ x z − 1 d ( − e − x ) = x z − 1 ( − e − x ) ∣ x = 0 ∞ + ∫ 0 ∞ e − x ( d x z − 1 ) = ( z − 1 ) ∫ 0 ∞ x z − 2 e − x d x = ( z − 1 ) Γ ( z − 1 ) \begin{align} \Gamma(z)&=\int_0^\infin x^{z-1}e^{-x}dx\\ &=\int_0^\infin x^{z-1}d(-e^{-x})\\ &=x^{z-1}(-e^{-x})|_{x=0}^\infin+\int_0^\infin e^{-x}(dx^{z-1})\\ &=(z-1)\int_0^\infin x^{z-2}e^{-x}dx\\ &=(z-1)\Gamma(z-1) \end{align} Γ(z)=0xz1exdx=0xz1d(ex)=xz1(ex)x=0+0ex(dxz1)=(z1)0xz2exdx=(z1)Γ(z1)
又因为 Γ ( 0 ) = 1 \Gamma(0)=1 Γ(0)=1,故当 x x x 为自然数时 Γ ( x ) = ( x − 1 ) ! \Gamma(x)=(x-1)! Γ(x)=(x1)!

Γ ( x ) \Gamma(x) Γ(x) 常用值有:

  • Γ ( 1 2 ) = π \Gamma(\frac{1}{2})=\sqrt{\pi} Γ(21)=π
  • Γ ( 1 ) = 1 \Gamma(1)=1 Γ(1)=1
  • Γ ( 3 2 ) = π 2 \Gamma(\frac{3}{2})=\frac{\sqrt{\pi}}{2} Γ(23)=2π
  • Γ ( 2 ) = 1 \Gamma(2)=1 Γ(2)=1

伽马分布的证明:

  • 单位时间内发生 k k k 次事件的概率 λ k e − λ k ! \lambda^k\frac{e^{-\lambda}}{k!} λkk!eλ

  • x x x 个单位时间内发生 k k k 次事件的概率 ( λ x ) k e − λ x k ! (\lambda x)^k\frac{e^{-\lambda x}}{k!} (λx)kk!eλx

  • x x x 个单位时间内,发生不到 α \alpha α 次事件的概率 ∑ k = 1 α − 1 ( λ x ) k e − λ x k ! \sum_{k=1}^{\alpha-1}(\lambda x)^k\frac{e^{-\lambda x}}{k!} k=1α1(λx)kk!eλx

  • P ( X > = x ) = ∑ k = 1 α − 1 ( λ x ) k e − λ x k ! P(X>=x)=\sum_{k=1}^{\alpha-1}(\lambda x)^k\frac{e^{-\lambda x}}{k!} P(X>=x)=k=1α1(λx)kk!eλx

  • P ( X < x ) = 1 − ∑ k = 1 α − 1 ( λ x ) k e − λ x k ! P(X<x)=1-\sum_{k=1}^{\alpha-1}(\lambda x)^k\frac{e^{-\lambda x}}{k!} P(X<x)=1k=1α1(λx)kk!eλx

  • P P P 求导之后可得概率密度函数
    f ( x ) = λ e − λ x ( λ x ) k − 1 ( k − 1 ) ! = λ k x k − 1 e − λ x Γ ( k ) f(x)=\frac{\lambda e^{-\lambda x}(\lambda x)^{k-1}}{(k-1)!}=\frac{\lambda^kx^{k-1}e^{-\lambda x}}{\Gamma(k)} f(x)=(k1)!λeλx(λx)k1=Γ(k)λkxk1eλx

性质:

  • 期望 k γ \frac{k}{\gamma} γk,方差 k γ 2 \frac{k}{\gamma^2} γ2k

  • 满足可加性,若 X 1 , X 2 X_1,X_2 X1,X2 相互独立,且 X 1 ∼ Γ ( α 1 , λ ) X_1\sim\Gamma(\alpha_1,\lambda) X1Γ(α1,λ) X 2 ∼ Γ ( α 2 , λ ) X_2\sim\Gamma(\alpha_2,\lambda) X2Γ(α2,λ),则 X 1 + X 2 ∼ Γ ( α 1 + α 2 , λ ) X_1+X_2\sim\Gamma(\alpha_1+\alpha_2,\lambda) X1+X2Γ(α1+α2,λ)

  • Γ ( 1 , λ ) = E ( λ ) \Gamma(1,\lambda)=E(\lambda) Γ(1,λ)=E(λ) Γ ( n 2 , 1 2 ) = χ 2 ( n ) \Gamma(\frac{n}{2},\frac{1}{2})=\chi^2(n) Γ(2n,21)=χ2(n)

函数图像展示:

当固定 k k k 时,可以看到随着 λ \lambda λ 的增加,函数也随之增高(方差降低),同时分布靠近原点(期望降低)。因为更容易在较短的时间内发生 k k k 次事件。

在这里插入图片描述

总结

分布含义
二项分布 B ( n , p ) B(n,p) B(n,p) n n n 次独立伯努利试验中事件恰发生 k k k 次的概率
泊松分布 π ( λ ) \pi(\lambda) π(λ)已知单位时间内会发生 λ \lambda λ 次事件,事件在任意时刻发生概率相同,求同样时间内发生 k k k 次事件的概率。
指数分布 Exp ( λ ) \text{Exp}(\lambda) Exp(λ)已知单位时间内会发生 λ \lambda λ 次事件,事件在任意时刻发生概率相同,求发生一次事件后,等待 t t t 个单位时间之后再次发生事件的概率密度函数
伽马分布 Γ ( α , λ ) \Gamma(\alpha,\lambda) Γ(α,λ)已知单位时间内会发生 λ \lambda λ 次事件,事件在任意时刻发生概率相同,求发生一次事件后,等待 t t t 个单位时间之后会发生第 α \alpha α 次事件的概率密度函数

参考链接:

  • 1
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值