概率统计复习——样本与抽样分布

概率统计复习——样本与抽样分布

总结自浙江大学盛骤老师等人的《概率论与数理统计》第四版

一、样本定义

定义,设 X X X 是具有分布函数 F F F 的随机变量,若 X 1 , X 2 , ⋯   , X n X_1,X_2,\cdots,X_n X1,X2,,Xn 是具有同一分布函数 F F F 的、相互独立的随机变量,则称 X 1 , X 2 , ⋯   , X n X_1,X_2,\cdots,X_n X1,X2,,Xn 为从分布函数 F F F 得到的容量为 n n n 的简单随机样本,简称样本,它们的观察值 x 1 , x 2 , ⋯   , x n x_1,x_2,\cdots,x_n x1,x2,,xn 称为样本值,又称为 X X X n n n 个独立的观察值。

由于 X i X_i Xi 之间相互独立,因此 ( X 1 , X 2 , ⋯   , X n ) (X_1,X_2,\cdots,X_n) (X1,X2,,Xn) 的分布函数和概率密度函数分别为
F ∗ ( x 1 , x 2 , ⋯   , x n ) = ∏ i = 1 n F ( x i ) f ∗ ( x 1 , x 2 , ⋯   , x n ) = ∏ i = 1 n f ( x i ) F^*(x_1,x_2,\cdots,x_n)=\prod_{i=1}^nF(x_i)\\ f^*(x_1,x_2,\cdots,x_n)=\prod_{i=1}^nf(x_i) F(x1,x2,,xn)=i=1nF(xi)f(x1,x2,,xn)=i=1nf(xi)

二、抽样分布

对样本进行处理时,使用的往往不是样本本身,而是基于样本的不同函数,利用这些函数进行统计推断。

定义,设 X 1 , X 2 , ⋯   , X n X_1,X_2,\cdots,X_n X1,X2,,Xn 是来自总体 X X X 的一个样本, g ( X 1 , X 2 , ⋯   , X n ) g(X_1,X_2,\cdots,X_n) g(X1,X2,,Xn) X 1 , X 2 , ⋯   , X n X_1,X_2,\cdots,X_n X1,X2,,Xn 的函数。若 g g g 中不包含未知参数,则称 g ( X 1 , X 2 , ⋯   , X n ) g(X_1,X_2,\cdots,X_n) g(X1,X2,,Xn) 是统计量。

由于 X 1 , X 2 , ⋯   , X n X_1,X_2,\cdots,X_n X1,X2,,Xn 是随机变量,而统计量 g ( X 1 , X 2 , ⋯   , X n ) g(X_1,X_2,\cdots,X_n) g(X1,X2,,Xn) 是随机变量的函数,因而统计量也是一个随机变量。若 x 1 , x 2 , ⋯   , x n x_1,x_2,\cdots,x_n x1,x2,,xn 是样本 X 1 , X 2 , ⋯   , X n X_1,X_2,\cdots,X_n X1,X2,,Xn 的观测值,则 g ( x 1 , x 2 , ⋯   , x n ) g(x_1,x_2,\cdots,x_n) g(x1,x2,,xn) g ( X 1 , X 2 , ⋯   , X n ) g(X_1,X_2,\cdots,X_n) g(X1,X2,,Xn) 的观测值。

下面列出常用的统计量:

  • 样本平均值
    X ˉ = 1 n ∑ i = 1 n X i \bar{X}=\frac{1}{n}\sum_{i=1}^nX_i Xˉ=n1i=1nXi

  • 样本方差
    S 2 = 1 n − 1 ∑ i = 1 n ( X i − X ˉ ) 2 = 1 n − 1 ( ∑ i = 1 n X i 2 − n X ˉ 2 ) S^2=\frac{1}{n-1}\sum_{i=1}^n(X_i-\bar{X})^2=\frac{1}{n-1}(\sum_{i=1}^nX_i^2-n\bar{X}^2) S2=n11i=1n(XiXˉ)2=n11(i=1nXi2nXˉ2)

  • 样本标准差
    S = S 2 S=\sqrt{S^2} S=S2

  • 样本 k k k 阶(原点)矩
    A k = 1 n ∑ i = 1 n X i k , k = 1 , 2 , ⋯ A_k=\frac{1}{n}\sum_{i=1}^nX_i^k,k=1,2,\cdots Ak=n1i=1nXik,k=1,2,

  • 样本 k k k 阶中心距
    B k = 1 n ∑ i = 1 n ( X i − X ˉ ) k , k = 2 , 3 , ⋯ B_k=\frac{1}{n}\sum_{i=1}^n(X_i-\bar{X})^k,k=2,3,\cdots Bk=n1i=1n(XiXˉ)k,k=2,3,

注,在方差的计算过程中,其分母为 n n n,在样本方差的计算中,分母为 n − 1 n-1 n1。关于这么做的原因可以见博客 https://www.cnblogs.com/zzdbullet/p/10087196.html,描写的较为简单清晰。

定义, X 1 , X 2 , ⋯   , X n X_1,X_2,\cdots,X_n X1,X2,,Xn 是总体 F F F 的一个样本,用 S ( x ) , − ∞ < x < ∞ S(x),-\infin<x<\infin S(x),<x< 表示 X 1 , X 2 , ⋯   , X n X_1,X_2,\cdots,X_n X1,X2,,Xn 中不大于 x x x 的随机变量的个数。定义经验分布函数 F n ( x ) F_n(x) Fn(x)
F n ( x ) = 1 n S ( x ) , − ∞ < x < ∞ F_n(x)=\frac{1}{n}S(x),-\infin<x<\infin Fn(x)=n1S(x),<x<

经验分布函数与总体分布函数相对应。

三、关于统计量的性质

均值:

  • E ( C ) = C E(C)=C E(C)=C
  • E ( C X ) = C E ( X ) E(CX)=CE(X) E(CX)=CE(X)
  • E ( X + Y ) = E ( X ) + E ( Y ) E(X+Y)=E(X)+E(Y) E(X+Y)=E(X)+E(Y)
  • X , Y X,Y X,Y 相互独立,有 E ( X Y ) = E ( X ) E ( Y ) E(XY)=E(X)E(Y) E(XY)=E(X)E(Y)

方差:

  • D ( C ) = 0 D(C)=0 D(C)=0
  • D ( C X ) = C 2 D ( X ) , D ( X + C ) = D ( X ) D(CX)=C^2D(X),D(X+C)=D(X) D(CX)=C2D(X),D(X+C)=D(X)
  • D ( X + Y ) = D ( X ) + D ( Y ) + 2 E {   ( X − E ( X ) ) ( Y − E ( Y ) )   } D(X+Y)=D(X)+D(Y)+2E\set{(X-E(X))(Y-E(Y))} D(X+Y)=D(X)+D(Y)+2E{(XE(X))(YE(Y))}
  • X , Y X,Y X,Y 相互独立,则 D ( X + Y ) = D ( X ) + D ( Y ) D(X+Y)=D(X)+D(Y) D(X+Y)=D(X)+D(Y)

四、有关正态总体的几个常用统计量的分布

一、 χ 2 \chi^2 χ2 分布

X 1 , X 2 , ⋯   , X n X_1,X_2,\cdots,X_n X1,X2,,Xn 是来自总体 N ( 0 , 1 ) N(0,1) N(0,1) 的样本,则称统计量
χ 2 = X 1 2 + X 2 2 + ⋯ + X n 2 \chi^2=X^2_1+X^2_2+\cdots+X^2_n χ2=X12+X22++Xn2
服从自由度为 n n n χ 2 \chi^2 χ2 分布,记为 χ 2 ∼ χ 2 ( n ) \chi^2\sim\chi^2(n) χ2χ2(n)

χ 2 ( n ) \chi^2(n) χ2(n) 分布的概率密度为
f ( y ) = { 1 2 n / 2 Γ ( n / 2 ) y n / 2 − 1 e − y / 2 , y > 0 , 0 , o t h e r w i s e f(y)=\begin{cases} \frac{1}{2^{n/2}\Gamma(n/2)}y^{n/2-1}e^{-y/2},&y>0,\\ 0,&otherwise \end{cases} f(y)={2n/2Γ(n/2)1yn/21ey/2,0,y>0,otherwise

证明:

  • 已知 X ∼ Φ ( μ , σ 2 ) X\sim \Phi(\mu,\sigma^2) XΦ(μ,σ2),则 Y = X 2 Y=X^2 Y=X2 的分布为
    f Y ( y ) = { 1 2 π y − 1 / 2 e − 1 / 2 , y > 0 , 0 , y ≤ 0. f_Y(y)=\begin{cases} \frac{1}{\sqrt{2\pi}}y^{-1/2}e^{-1/2},&y>0,\\ 0,&y\leq 0. \end{cases} fY(y)={2π 1y1/2e1/2,0,y>0,y0.

    f Y ( y ) = Γ ( 1 2 , 1 2 ) f_Y(y)=\Gamma(\frac{1}{2},\frac{1}{2}) fY(y)=Γ(21,21)

  • 又伽马分布具有可加性,则 χ 2 ∼ Γ ( n 2 , 1 2 ) \chi^2\sim\Gamma(\frac{n}{2},\frac{1}{2}) χ2Γ(2n,21)

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-T8XZbGKY-1665057868962)(D:\CNN\Note\Asserts\chi2.png)]

性质:

  • Γ \Gamma Γ 分布的可加性易得 χ 2 \chi^2 χ2 分布的可加性
    χ 1 2 ∼ χ 2 ( n 1 ) , χ 2 2 ∼ χ 2 ( n 2 ) 有 χ 1 2 + χ 2 2 ∼ χ 2 ( n 1 + n 2 ) \chi^2_1\sim\chi^2(n_1),\chi^2_2\sim\chi^2(n_2)\\ 有 \chi^2_1+\chi^2_2\sim\chi^2(n_1+n_2) χ12χ2(n1),χ22χ2(n2)χ12+χ22χ2(n1+n2)

  • χ 2 ∼ χ 2 ( n ) \chi^2\sim\chi^2(n) χ2χ2(n),则 E ( χ 2 ) = n , D ( χ 2 ) = 2 n E(\chi^2)=n,D(\chi^2)=2n E(χ2)=n,D(χ2)=2n

二、t 分布

X ∼ N ( 0 , 1 ) X\sim N(0,1) XN(0,1) Y ∼ χ 2 ( n ) Y\sim\chi^2(n) Yχ2(n),且 X , Y X,Y X,Y 相互独立,称随机变量
t = X Y / n t=\frac{X}{\sqrt{Y/n}} t=Y/n X
服从自由度为 n n n t t t 分布,记为 t ∼ t ( n ) t\sim t(n) tt(n),其又称为学生氏分布。概率密度函数为
h ( t ) = Γ [ ( n + 1 ) / 2 ] π n Γ ( n / 2 ) ( 1 + t 2 n ) − ( n + 1 ) / 2 , − ∞ < x < ∞ h(t)=\frac{\Gamma[(n+1)/2]}{\sqrt{\pi n}\Gamma(n/2)}(1+\frac{t^2}{n})^{-(n+1)/2},-\infin<x<\infin h(t)=πn Γ(n/2)Γ[(n+1)/2](1+nt2)(n+1)/2,<x<
n n n 足够大时, t t t 近似标准正态分布。当 n > 45 n>45 n>45 时,使用正态近似。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-wYuv2bKh-1665057868966)(D:\CNN\Note\Asserts\student.png)]

三、 F F F 分布

U ∼ χ 2 ( n 1 ) , V ∼ χ 2 ( n 2 ) U\sim\chi^2(n_1),V\sim\chi^2(n_2) Uχ2(n1),Vχ2(n2),且 U , V U,V U,V 相互独立,则称随机变量
F = U / n 1 V / n 2 F=\frac{U/n_1}{V/n_2} F=V/n2U/n1
为服从自由度为 ( n 1 , n 2 ) (n_1,n_2) (n1,n2) F F F 分布,记为 F ∼ F ( n 1 , n 2 ) F\sim F(n_1,n_2) FF(n1,n2)。其概率密度函数为
f ( x ) = Γ ( ( n 1 + n 2 ) / 2 ) ( n 1 / n 2 ) n 1 / 2 x n 1 / 2 − 1 Γ ( n 1 / 2 ) Γ ( n 2 / 2 ) [ ( n 1 / n 2 ) x + 1 ] ( n 1 + n 2 ) / 2 x > 0 f(x) = \frac{\Gamma((n_{1}+n_{2})/2)(n_{1}/n_{2})^{n_{1}/2}x^{n_{1}/2-1}} {\Gamma(n_{1}/2)\Gamma(n_{2}/2)[(n_{1}/n_{2})x+1]^{(n_{1}+n_{2})/2}} \qquad \qquad x > 0 f(x)=Γ(n1/2)Γ(n2/2)[(n1/n2)x+1](n1+n2)/2Γ((n1+n2)/2)(n1/n2)n1/2xn1/21x>0
由定义可知,若 F ∼ F ( n 1 , n 2 ) F\sim F(n_1,n_2) FF(n1,n2),则 1 F ∼ F ( n 2 , n 1 ) \frac{1}{F}\sim F(n_2,n_1) F1F(n2,n1) F F F 分布的一个性质为 F 1 − α ( n 1 , n 2 ) = 1 F α ( n 2 , n 1 ) F_{1-\alpha}(n_1,n_2)=\frac{1}{F_\alpha(n_2,n_1)} F1α(n1,n2)=Fα(n2,n1)1,其中 F α F_\alpha Fα F F F 分布的 α \alpha α 分位点。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-ilYMP7LW-1665057868975)(D:\CNN\Note\Asserts\F.png)]

四、正态总体的样本均值与样本方差的分布

设总体的均值为 μ \mu μ,方差为 σ 2 \sigma^2 σ2 X i , i = 1 , ⋯   , n X_i,i=1,\cdots,n Xi,i=1,,n X X X 的一个样本, X ˉ , S 2 \bar{X},S^2 Xˉ,S2 分别是样本均值和方差,则有
E ( X ˉ ) = μ , D ( S 2 ) = σ 2 n E(\bar{X})=\mu,D(S^2)=\frac{\sigma^2}{n} E(Xˉ)=μ,D(S2)=nσ2
进一步,假设 X ∼ N ( μ , σ 2 ) X\sim N(\mu,\sigma^2) XN(μ,σ2),则 X ˉ \bar{X} Xˉ 也满足正态分布(正态分布的可加性),得到以下定理

  • 定理一,设 X 1 , ⋯   , X n X_1,\cdots,X_n X1,,Xn 为来自正态总体 N ( μ , σ 2 ) N(\mu,\sigma^2) N(μ,σ2) 的样本, X ˉ \bar{X} Xˉ 是样本均值,有
    X ˉ ∼ N ( μ , σ 2 / n ) \bar{X}\sim N(\mu,\sigma^2/n) XˉN(μ,σ2/n)

  • 定理二,设 X 1 , ⋯   , X n X_1,\cdots,X_n X1,,Xn 为来自正态总体 N ( μ , σ 2 ) N(\mu,\sigma^2) N(μ,σ2) 的样本, X ˉ , S 2 \bar{X},S^2 Xˉ,S2 分别是样本均值和方差,有

    1. ( n − 1 ) S 2 σ 2 ∼ χ 2 ( n − 1 ) \frac{(n-1)S^2}{\sigma^2}\sim\chi^2(n-1) σ2(n1)S2χ2(n1)
    2. X ˉ \bar{X} Xˉ S 2 S^2 S2 相互独立
  • 定理三
    X ˉ − μ S / n ∼ t ( n − 1 ) \frac{\bar{X}-\mu}{S/\sqrt{n}}\sim t(n-1) S/n Xˉμt(n1)

  • 定理四,设 X 1 , ⋯   , X n 1 X_1,\cdots,X_{n_1} X1,,Xn1 Y 1 , ⋯   , Y n 2 Y_1,\cdots,Y_{n_2} Y1,,Yn2 分别是来自正态总体 N ( μ 1 , σ 1 2 ) N(\mu_1,\sigma_1^2) N(μ1,σ12) N ( μ 2 , σ 2 2 ) N(\mu_2,\sigma^2_2) N(μ2,σ22) 的样本,且这两个样本相互独立。设 X ˉ , Y ˉ \bar{X},\bar{Y} Xˉ,Yˉ 分别是这两个样本的均值, S 1 2 , S 2 2 S_1^2,S_2^2 S12,S22 分别是这两个样本的方差。有

    1. S 1 2 / S 2 2 σ 1 2 / σ 2 2 ∼ F ( n 1 − 1 , n 2 − 1 ) \frac{S_1^2/S_2^2}{\sigma_1^2/\sigma_2^2}\sim F(n_1-1,n_2-1) σ12/σ22S12/S22F(n11,n21)

    2. σ 1 2 = σ 2 2 = σ \sigma_1^2=\sigma_2^2=\sigma σ12=σ22=σ
      ( X ˉ − Y ˉ ) − ( μ 1 − μ 2 ) S w 1 n 1 + 1 n 2 ∼ t ( n 1 + n 2 − 2 ) \frac{(\bar{X}-\bar{Y})-\left(\mu_{1}-\mu_{2}\right)}{S_{w} \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}} \sim t\left(n_{1}+n_{2}-2\right) Swn11+n21 (XˉYˉ)(μ1μ2)t(n1+n22)
      其中
      S w 2 = ( n 1 − 1 ) S 1 2 + ( n 2 − 1 ) S 2 2 n 1 + n 2 − 2 , S w = S w 2 S_{w}^{2}=\frac{\left(n_{1}-1\right) S_{1}^{2}+\left(n_{2}-1\right) S_{2}^{2}}{n_{1}+n_{2}-2}, \quad S_{w}=\sqrt{S_{w}^{2}} Sw2=n1+n22(n11)S12+(n21)S22,Sw=Sw2

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值