二元逻辑回归
适用于分析因变量为二分类变量。
基本原理及SPSS解析
1.比数:odds=p/1-p (阳性概率除以阴性概率)
2. ln(odds) 使自变量越大或者越小,因变量只在0-1之间
3. 回归方程:logit§=ln(p/1-p)=a+β1x1+β2x2…+βmxm
4. 比分检验:以非饱和模型为基础判断自变量是否应该进入模型,显著性小于0.05,则应进入模型。
5. wold检验:检验每个自变量是否与因变量显著性影响,有多重共线性时结果不准确
6. OR比数比:OR=Exp(β)反应对y的影响大小;下表p<0.05,表示常数项不为0,与0有显著性差异。
7.似然比检验:两个模型进行比较判断模型好坏

- 块0表示只有常量时的模型,块1的模型为加入自变量之后的模型
- 只有常量的模型似然比为560+10.543;加入部分自变量的模型1似然比为560;加入所有自变量之后的模型2似然比为554,554+模型2步长5.917为模型1似然比
- -2对数似然越接近0,模型拟合度越高;后面两个伪

本文介绍了二元逻辑回归的基本原理,包括比数、对数几率、回归方程等内容,并通过SPSS解析模型进入方法、分类变量的引入方式,以及模型评估指标,如似然比检验和伪决定系数。
最低0.47元/天 解锁文章

被折叠的 条评论
为什么被折叠?



