【机器学习】逻辑回归(二元分类)

感知器的种类

  • 离散感知器:输出的预测值仅为 0 或 1
  • 连续感知器(逻辑分类器):输出的预测值可以是 0 到 1 的任何数字,标签为 0 的点输出接近于 0 的数,标签为 1 的点输出接近于 1 的数
  • 逻辑回归算法(logistics regression algorithm):用于训练逻辑分类器的算法

sigmoid(logistics)函数

  • sigmoid 函数:

g ( z ) = 1 1 + e − z ,   z ∈ ( − ∞ , + ∞ ) ,   0 < g ( z ) < 1 w h e n   z ∈ ( − ∞ , 0 ) ,   0 < g ( z ) < 0.5 w h e n   z ∈ [ 0 , + ∞ ) ,   0.5 ≤ g ( z ) < 1 \begin{aligned} & g(z) = \frac{1}{1 + e^{-z}},\ z \in (-\infty, +\infty),\ 0 < g(z) < 1 \\ & when \ z \in (-\infty, 0), \ 0 < g(z) < 0.5 \\ & when \ z \in [0, +\infty), \ 0.5 \leq g(z) < 1 \end{aligned} g(z)=1+ez1, z(,+), 0<g(z)<1when z(,0), 0<g(z)<0.5when z[0,+), 0.5g(z)<1

  • 决策边界(decision boundary):

线性决策边界: z = w ⃗ ⋅ x ⃗ + b 非线性决策边界(例如): z = x 1 2 + x 2 2 − 1 线性决策边界:z = \vec{w} \cdot \vec{x} + b \\ 非线性决策边界(例如):z = x_1^2 + x_2^2 - 1 线性决策边界:z=w x +b非线性决策边界(例如):z=x12+x221

  • sigmoid 函数与线性决策边界函数的结合:

g ( z ) = 1 1 + e − z f w ⃗ , b ( x ⃗ ) = 1 1 + e − ( w ⃗ ⋅ x ⃗ + b ) \begin{aligned} & g(z) = \frac{1}{1 + e^{-z}} \\ & f_{\vec{w}, b}(\vec{x}) = \frac{1}{1 + e^{-(\vec{w} \cdot \vec{x} + b)}} \end{aligned} g(z)=1+ez1fw ,b(x )=1+e(w x +b)1

  • 决策原理( y ^ \hat{y} y^ 为预测值):

概率: { a 1 = f w ⃗ , b ( x ⃗ ) = P ( y ^ = 1 ∣ x ⃗ ) a 2 = 1 − a 1 = P ( y ^ = 0 ∣ x ⃗ ) 概率: \begin{cases} a_1 = f_{\vec{w}, b}(\vec{x}) &= P(\hat{y} = 1 | \vec{x}) \\ a_2 = 1 - a_1 &= P(\hat{y} = 0 | \vec{x}) \end{cases} 概率:{a1=fw ,b(x )a2=1a1=P(y^=1∣x )=P(y^=0∣x )

代价/损失函数(cost function)——对数损失函数(log loss function)

  • 一个训练样本: x ⃗ ( i ) = ( x 1 ( i ) , x 2 ( i ) , . . . , x n ( i ) ) \vec{x}^{(i)} = (x_1^{(i)}, x_2^{(i)}, ..., x_n^{(i)}) x (i)=(x1(i),x2(i),...,xn(i)) y ( i ) y^{(i)} y(i)
  • 训练样本总数 = m m m
  • 对数损失函数(log loss function):

L ( f w ⃗ , b ( x ⃗ ( i ) ) , y ( i ) ) = { − ln ⁡ [ f w ⃗ , b ( x ⃗ ( i ) ) ] ,   y ( i ) = 1 − ln ⁡ [ 1 − f w ⃗ , b ( x ⃗ ( i ) ) ] ,   y ( i ) = 0 = − y ( i ) ln ⁡ [ f w ⃗ , b ( x ⃗ ( i ) ) ] − [ 1 − y ( i ) ] ln ⁡ [ 1 − f w ⃗ , b ( x ⃗ ( i ) ) ] = − y ( i ) ln ⁡ a 1 ( i ) − [ 1 − y ( i ) ] ln ⁡ a 2 ( i ) \begin{aligned} L(f_{\vec{w}, b}(\vec{x}^{(i)}), y^{(i)}) &= \begin{cases} -\ln [f_{\vec{w}, b}(\vec{x}^{(i)})], \ y^{(i)} = 1 \\ -\ln [1 - f_{\vec{w}, b}(\vec{x}^{(i)})], \ y^{(i)} = 0 \\ \end{cases} \\ & = -y^{(i)} \ln [f_{\vec{w}, b}(\vec{x}^{(i)})] - [1 - y^{(i)}] \ln [1 - f_{\vec{w}, b}(\vec{x}^{(i)})] \\ & = -y^{(i)} \ln a_1^{(i)} - [1 - y^{(i)}] \ln a_2^{(i)} \end{aligned} L(fw ,b(x (i)),y(i))={ln[fw ,b(x (i))], y(i)=1ln[1fw ,b(x (i))], y(i)=0=y(i)ln[fw ,b(x (i))][1y(i)]ln[1fw ,b(x (i))]=y(i)lna1(i)[1y(i)]lna2(i)

  • 代价函数(cost function):

J ( w ⃗ , b ) = 1 m ∑ i = 1 m L ( f w ⃗ , b ( x ⃗ ( i ) ) , y ( i ) ) = − 1 m ∑ i = 1 m ( y ( i ) ln ⁡ [ f w ⃗ , b ( x ⃗ ( i ) ) ] + [ 1 − y ( i ) ] ln ⁡ [ 1 − f w ⃗ , b ( x ⃗ ( i ) ) ] ) = − 1 m ∑ i = 1 m ( y ( i ) ln ⁡ a 1 ( i ) + [ 1 − y ( i ) ] ln ⁡ a 2 ( i ) ) \begin{aligned} J(\vec{w}, b) &= \frac{1}{m} \sum_{i=1}^{m} L(f_{\vec{w}, b}(\vec{x}^{(i)}), y^{(i)}) \\ &= -\frac{1}{m} \sum_{i=1}^{m} \bigg(y^{(i)} \ln [f_{\vec{w}, b}(\vec{x}^{(i)})] + [1 - y^{(i)}] \ln [1 - f_{\vec{w}, b}(\vec{x}^{(i)})] \bigg) \\ &= -\frac{1}{m} \sum_{i=1}^{m} \bigg(y^{(i)} \ln a_1^{(i)} + [1 - y^{(i)}] \ln a_2^{(i)} \bigg) \end{aligned} J(w ,b)=m1i=1mL(fw ,b(x (i)),y(i))=m1i=1m(y(i)ln[fw ,b(x (i))]+[1y(i)]ln[1fw ,b(x (i))])=m1i=1m(y(i)lna1(i)+[1y(i)]lna2(i))

梯度下降算法(gradient descent algorithm)

  • α \alpha α:学习率(learning rate),用于控制梯度下降时的步长,以抵达损失函数的最小值处。
  • 逻辑回归的梯度下降算法:
    r e p e a t { t m p _ w 1 = w 1 − α 1 m ∑ i = 1 m [ f w ⃗ , b ( x ⃗ ( i ) ) − y ( i ) ] x 1 ( i ) t m p _ w 2 = w 2 − α 1 m ∑ i = 1 m [ f w ⃗ , b ( x ⃗ ( i ) ) − y ( i ) ] x 2 ( i ) . . . t m p _ w n = w n − α 1 m ∑ i = 1 m [ f w ⃗ , b ( x ⃗ ( i ) ) − y ( i ) ] x n ( i ) t m p _ b = b − α 1 m ∑ i = 1 m [ f w ⃗ , b ( x ⃗ ( i ) ) − y ( i ) ] s i m u l t a n e o u s   u p d a t e   e v e r y   p a r a m e t e r s } u n t i l   c o n v e r g e \begin{aligned} repeat \{ \\ & tmp\_w_1 = w_1 - \alpha \frac{1}{m} \sum^{m}_{i=1} [f_{\vec{w},b}(\vec{x}^{(i)}) - y^{(i)}] x_1^{(i)} \\ & tmp\_w_2 = w_2 - \alpha \frac{1}{m} \sum^{m}_{i=1} [f_{\vec{w},b}(\vec{x}^{(i)}) - y^{(i)}] x_2^{(i)} \\ & ... \\ & tmp\_w_n = w_n - \alpha \frac{1}{m} \sum^{m}_{i=1} [f_{\vec{w},b}(\vec{x}^{(i)}) - y^{(i)}] x_n^{(i)} \\ & tmp\_b = b - \alpha \frac{1}{m} \sum^{m}_{i=1} [f_{\vec{w},b}(\vec{x}^{(i)}) - y^{(i)}] \\ & simultaneous \ update \ every \ parameters \\ \} until \ & converge \end{aligned} repeat{}until tmp_w1=w1αm1i=1m[fw ,b(x (i))y(i)]x1(i)tmp_w2=w2αm1i=1m[fw ,b(x (i))y(i)]x2(i)...tmp_wn=wnαm1i=1m[fw ,b(x (i))y(i)]xn(i)tmp_b=bαm1i=1m[fw ,b(x (i))y(i)]simultaneous update every parametersconverge

正则化逻辑回归(regularization logistics regression)

  • 正则化的作用:解决过拟合(overfitting)问题(也可通过增加训练样本数据解决)。
  • 损失/代价函数(仅需正则化 w w w,无需正则化 b b b):

J ( w ⃗ , b ) = − 1 m ∑ i = 1 m ( y ( i ) ln ⁡ [ f w ⃗ , b ( x ⃗ ( i ) ) ] + [ 1 − y ( i ) ] ln ⁡ [ 1 − f w ⃗ , b ( x ⃗ ( i ) ) ] ) + λ 2 m ∑ j = 1 n w j 2 \begin{aligned} J(\vec{w}, b) &= -\frac{1}{m} \sum_{i=1}^{m} \bigg(y^{(i)} \ln [f_{\vec{w}, b}(\vec{x}^{(i)})] + [1 - y^{(i)}] \ln [1 - f_{\vec{w}, b}(\vec{x}^{(i)})] \bigg) + \frac{\lambda}{2m} \sum^{n}_{j=1} w_j^2 \end{aligned} J(w ,b)=m1i=1m(y(i)ln[fw ,b(x (i))]+[1y(i)]ln[1fw ,b(x (i))])+2mλj=1nwj2

其中,第二项为正则化项(regularization term),使 w j w_j wj 变小。初始设置的 λ \lambda λ 越大,最终得到的 w j w_j wj 越小。

  • 梯度下降算法:

r e p e a t { t m p _ w 1 = w 1 − α 1 m ∑ i = 1 m [ f w ⃗ , b ( x ⃗ ( i ) ) − y ( i ) ] x 1 ( i ) + λ m w 1 t m p _ w 2 = w 2 − α 1 m ∑ i = 1 m [ f w ⃗ , b ( x ⃗ ( i ) ) − y ( i ) ] x 2 ( i ) + λ m w 2 . . . t m p _ w n = w n − α 1 m ∑ i = 1 m [ f w ⃗ , b ( x ⃗ ( i ) ) − y ( i ) ] x n ( i ) + λ m w n t m p _ b = b − α 1 m ∑ i = 1 m [ f w ⃗ , b ( x ⃗ ( i ) ) − y ( i ) ] s i m u l t a n e o u s   u p d a t e   e v e r y   p a r a m e t e r s } u n t i l   c o n v e r g e \begin{aligned} repeat \{ \\ & tmp\_w_1 = w_1 - \alpha \frac{1}{m} \sum^{m}_{i=1} [f_{\vec{w},b}(\vec{x}^{(i)}) - y^{(i)}] x_1^{(i)} + \frac{\lambda}{m} w_1 \\ & tmp\_w_2 = w_2 - \alpha \frac{1}{m} \sum^{m}_{i=1} [f_{\vec{w},b}(\vec{x}^{(i)}) - y^{(i)}] x_2^{(i)} + \frac{\lambda}{m} w_2 \\ & ... \\ & tmp\_w_n = w_n - \alpha \frac{1}{m} \sum^{m}_{i=1} [f_{\vec{w},b}(\vec{x}^{(i)}) - y^{(i)}] x_n^{(i)} + \frac{\lambda}{m} w_n \\ & tmp\_b = b - \alpha \frac{1}{m} \sum^{m}_{i=1} [f_{\vec{w},b}(\vec{x}^{(i)}) - y^{(i)}] \\ & simultaneous \ update \ every \ parameters \\ \} until \ & converge \end{aligned} repeat{}until tmp_w1=w1αm1i=1m[fw ,b(x (i))y(i)]x1(i)+mλw1tmp_w2=w2αm1i=1m[fw ,b(x (i))y(i)]x2(i)+mλw2...tmp_wn=wnαm1i=1m[fw ,b(x (i))y(i)]xn(i)+mλwntmp_b=bαm1i=1m[fw ,b(x (i))y(i)]simultaneous update every parametersconverge

代码实现

import numpy as np
import matplotlib.pyplot as plt

# sigmoid 函数 f = 1/(1+e^(-x))
def sigmoid(x):
    return np.exp(x) / (1 + np.exp(x))

# 计算分数 z = w*x+b
def score(x, w, b):
    return np.dot(w, x) + b

# 预测值 f_pred = sigmoid(z)
def prediction(x, w, b):
    return sigmoid(score(x, w, b))

# 对数损失函数 f = -y*ln(a)-(1-y)*ln(1-a)
# 训练样本: (vec{X[i]}, y[i])
def log_loss(X_i, y_i, w, b):
    pred = prediction(X_i, w, b)
    return - y_i * np.log(pred) - (1-y_i) * np.log(1-pred)

# 计算损失函数 J(w, b)
# 训练样本: (vec{X[i]}, y[i])
def cost_function(X, y, w, b):
    cost_sum = 0
    m = X.shape[0]
    for i in range(m):
        cost_sum += log_loss(X[i], y[i], w, b)
    return cost_sum / m

# 计算梯度值 dJ/dw, dJ/db
def compute_gradient(X, y, w, b):
    m = X.shape[0]  # 训练集的数据样本数(矩阵行数)
    n = X.shape[1]  # 每个数据样本的维度(矩阵列数,即特征个数)
    dj_dw = np.zeros((n,))
    dj_db = 0.0
    for i in range(m):  # 每个数据样本
        pred = prediction(X[i], w, b)
        for j in range(n):  # 每个数据样本的维度
            dj_dw[j] += (pred - y[i]) * X[i, j]
        dj_db += (pred - y[i])
    dj_dw = dj_dw / m
    dj_db = dj_db / m
    return dj_dw, dj_db

# 梯度下降算法,以得到决策边界(decision boundary)方程
def logistic_function(X, y, w, b, learning_rate=0.01, epochs=1000):
    J_history = []
    for epoch in range(epochs):
        dj_dw, dj_db = compute_gradient(X, y, w, b)
        # w 和 b 需同步更新
        w = w - learning_rate * dj_dw
        b = b - learning_rate * dj_db
        J_history.append(cost_function(X, y, w, b))  # 记录每次迭代产生的误差值
    return w, b, J_history

# 绘制线性方程的图像
def draw_line(w, b, xmin, xmax, title):
    x = np.linspace(xmin, xmax)
    y = w * x + b
    plt.xlabel("feature-0", size=15)
    plt.ylabel("feature-1", size=15)
    plt.title(title, size=20)
    plt.plot(x, y)

# 绘制散点图
def draw_scatter(x, y, title):
    plt.xlabel("epoch", size=15)
    plt.ylabel("error", size=15)
    plt.title(title, size=20)
    plt.scatter(x, y)

# 从这里开始执行
if __name__ == '__main__':
    # 加载训练集
    X_train = np.array([[1, 0], [0, 2], [1, 1], [1, 2], [1, 3], [2, 2], [2, 3], [3, 2]])
    y_train = np.array([0, 0, 0, 0, 1, 1, 1, 1])
    w = np.zeros((X_train.shape[1],)) # 权重
    b = 0.0 # 偏置
    learning_rate = 0.01 # 学习率
    epochs = 10000 # 迭代次数
    J_history = [] # 记录每次迭代产生的误差值

    # 逻辑回归建立模型
    w, b, J_history = logistic_function(X_train, y_train, w, b, learning_rate, epochs)
    print(f"result: w = {np.round(w, 4)}, b = {b:0.4f}")  # 打印结果

    # 绘制迭代计算得到的决策边界(decision boundary)方程
    # w[0] * x_feature0 + w[1] * x_feature1 + b = 0
    # --> x_feature1 = -w[0]/w[1] * x_feature0 - b/w[1]
    plt.figure(1)
    draw_line(-w[0]/w[1], -b/w[1], 0.0, 3.0, "Decision Boundary")
    plt.scatter(X_train[0:4, 0], X_train[0:4, 1], label="label-0: sad", marker='s')  # 将训练集也表示在图中
    plt.scatter(X_train[4:8, 0], X_train[4:8, 1], label="label-1: happy", marker='^')  # 将训练集也表示在图中
    plt.legend()
    plt.show()

    # 绘制误差值的散点图
    plt.figure(2)
    x_axis = list(range(0, epochs))
    draw_scatter(x_axis, J_history, "Cost Function in Every Epoch")
    plt.show()

运行结果

在这里插入图片描述
在这里插入图片描述

  • 20
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值