【人工智能基础】推理技术方法总结

一.命题逻辑基础——基本等值式

①交换率
p∨q <=> q∨p
p∧q <=> q ∧p
②结合率
(p∨q)∨r<=> p∨(q∨r)
(p ∧q)∧r<=> p ∧(q∧r)
③分配率
p∨(q∧r)<=>(p∨q)∧(p∨r)
p∧(q∨r)<=>(p∧q)∨(p∧r)
④摩根率
~ (p∨q) <=> ~ p ∧~ q
~ (p∧q) <=> ~ p ∨ ~ q
⑤吸收率
p∨(p∧q ) <=>p
p∧(p∨q )<=>p
⑥同一律
p∨0 <=> p
p∧1 <=> p
⑦蕴含等值式
p→q<=>~p∨q
⑧假言易位式
p→q<=>~p→~q

二.消解原理

1.消解推理技术
已知两子句L1∨α和~L2∨β ,如果L1和L2具有最一般合一者σ,那么通过消解可以从这两个父辈子句推导出一个新子句(α∨β) σ。
这个新子句叫做消解式,它是由取这两个子句的折取,然后消去互补对而得到的。

2.消解推理常用规则

父辈子句 消解式
p 和 ~ p ∨ q (即p → q) q
p ∨ q和 ~ p ∨ q q
p ∨ q和p ∨ ~ q q ∨ ~q 或 p ∨ ~p
~ p ∨ p NIL
~ p ∨ q (即p→q) 和~ q ∨ r (即q→r) ~ p ∨ r (即p→r)
B(x)和 ~ B(x) ∨ C(x) C(x)
P(x,f(y)) ∨ Q(x) ∨ R(f(y)) P(f(y)), σ=(f(y)/x)
P(x,f(y)) ∨ Q(x) ∨ R(f(y))和~ P(f(f(a)),z) ∨ R(z,w) Q(f(f(a)) ∨ R(f(a)) ∨ R(f(y),w),σ=f(f(a))/x,f(y)/z)

3.消解反演
(1)否定L,得~L;
(2)把~L添加到S中去;
(3)把新产生的集合{~L,S}化成子句集;
(4)应用消解原理,力图推导出一个表示矛盾的空子句NIL。

例题:快乐学生问题

假设:任何通过计算机考试并获奖的人都是快乐的,任何肯学习或幸运的人都可以通过所有考试,张不肯学习但他是幸运的,任何幸运的人都能获奖。求证:张是快乐的。

解:先将问题用谓词表示如下&

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值