特征服务典型场景-离线与实时统计

例如有这样一个需求:业务方希望获取司机实时更新的累计完单量,需保证收到完单事件后秒级更新。由于滴滴订单量很大,单个司机的完单量从几单到几万单不等,直接查询底层存储如MySQL、ElasticSearch等存储,会对底层存储造成很大查询压力,并且延时也较高,在高并发等情况下容易出现各种问题。在特征服务这边采用批处理+流处理这样的Lambda架构来实现这类需求,整个的数据流如下:

可以看到这是一个典型的Lambda架构,不了解的可以参考维基百科:Lambda architecture

在统计特征汇总历史完单量和实时完单量,需要注意以下情况:当T-1天未准备就绪时,需要使用T-2天的历史数据、T-1天实时数据、T天实时数据相加。举例如下:

假设批处理计算司机历史完单量的任务平均在上午6点完成并导入KV存储系统。

  • 在6月10日0到6时期间,计算逻辑如下:截止到6月8日(含)的历史完单量 + 6月9日的实时完单量 + 6月10日的实时完单量。
  • 在6月10日6到24时期间,计算逻辑如下:截止到6月9日(含)的历史完单量 + 6月10日的实时完单量。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值