漫步最优化三——优化算法的一般结构



殿




——

大多数优化算法涉及一系列步骤,典型的模式如下:

  1. k=0 且初始化 x0
  2. 计算 F0=f(x0)

  1. k=k+1
  2. 利用近似过程计算 xk 的变化量 Δxk ,其中
    ΔxTk=[Δx1 Δx2 Δxn]
  3. xk=xk1+Δxk
  4. 计算 Fk=f(xk) ΔFk=Fk1Fk


判断是否收敛条件已经到达,例如判断 ΔFk 与(或) Δxk ,如果达到执行第四步;否则转到第二步。

  1. 输出 x=xk F=f(x)
  2. 结束

在第一步,用手头知识估计的值初始化向量 x0 ,好多情况下我们无法进行估计,这时候 x0=0 。然后重复执行步骤2与3直到达到收敛条件,每执行一次步骤2,3就表示一次迭代,也就是说 k 是迭代次数。

当达到收敛调价时,执行第四步,这时候列向量

x=[x1 x2 xn]=xk

对应的 F 值为

F=f(x)

列向量 x 为最优,最小值点, F 为目标函数的最优或最小值, x,F 对构成了优化问题的解。

根据所用的优化问题与优化方法,有几种方法检查收敛。例如在任意两次迭代的 Fk 之差很小时,也就是

|ΔFk|=|Fk1Fk|<εF

结束算法,其中 εF 是目标函数的最优容忍度,同样的当所有变量的差很小时,也就是

|Δxi|<εxfor i=1,2,,n

结束算法,其中 εx 时变量 x1,x2,,xn 的最优容容忍度,第三种就是同时满足上面的两个条件。

我们主要考虑很好应用,可靠且计算量小的最小化算法,在数学规划中可靠算法用术语来说就是鲁棒算法。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值