论文阅读笔记 | EEG与fNIRS耦合的方法、挑战与前景

参考:论文阅读笔记 | EEG与fNIRS耦合的方法、挑战与前景
本期分享的论文[1]主要探讨了fNIRS和EEG这两种非侵入性神经影像学技术的特点及其在大脑活动监测方面的应用。同时,作者Li还详细阐述了如何分析并发记录的EEG和fNIRS两种数据来实现对大脑活动的深入探究。最后,文章总结了当前研究中存在的挑战,并提出了未来研究的方向。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
[1] Li, R., Yang, D., Fang, F., Hong, K.S., Reiss, A.L. and Zhang, Y., 2022. Concurrent fNIRS and EEG for brain function investigation: a systematic, methodology-focused review. Sensors, 22(15), p.5865.

### EEGfNIRS 在运动想象中的应用对比 #### 技术概述 脑电图(EEG)是一种通过检测头皮上的电信号来记录大脑活动的技术[^2]。功能性近红外光谱成像(fNIRS)则利用近红外光穿透颅骨并测量血氧水平变化,从而反映大脑皮层的功能激活情况[^1]。 #### 应用场景 在运动想象(Motor Imagery, MI)领域中,EEG 是最广泛使用的神经技术之一。它能够实时捕捉到由运动想象引发的大脑区域的事件相关去同步化/同步化(ERD/ERS),这些信号可以被用于解码用户的意图。相比之下,fNIRS 提供了一种无创的方式监测运动执行或想象有关的大脑血液动力学反应,特别是在前额叶和顶叶皮质区域能够提供较高的空间分辨率。 #### 数据采集特性比较 - **时间分辨率**: EEG 的优势在于其高时间分辨率,适合于快速动态过程的研究以及在线反馈系统的开发。而 fNIRS 虽然具有较低的时间精度,但对于长时间实验设计来说更为稳定可靠。 - **空间定位能力**: 就空间分辨率而言,fNIRS 明显优于 EEG。由于光学探头可以直接放置在感兴趣的具体位置上,因此能更精确地标定特定脑区内的功能状态改变。 #### 实验设置差异 对于基于 EEG 的 MI 系统通常需要复杂的预处理步骤如滤波、伪迹去除等;同时还需要考虑个体间头皮导联布局可能存在的偏差影响分类性能等问题。另一方面,在构建 fNIRS-MI 平台时,则需注意光源探测器间距的选择会对信噪比造成显著作用,并且头部移动可能会干扰数据质量。 #### 成本效益分析 消费级别的 EEG 设备相对便宜且便携性强,非常适合初学者或者预算有限的小型项目使用。然而高端科研用途下的多通道配置价格昂贵。至于 fNIRS 方面虽然初始购置成本较高但由于维护简单使用寿命较长所以长期来看可能是划算的投资选项。 ```python import numpy as np from scipy import signal def preprocess_eeg(eeg_data): """Preprocess raw EEG data.""" filtered = signal.butterworth_filter(eeg_data, lowcut=8, highcut=30, fs=256) artifact_removed = remove_artifacts(filtered) return artifact_removed def process_fnirs(fnirs_data): """Process raw fNIRS data.""" oxy_hb, deoxy_hb = separate_channels(fnirs_data) smoothed_oxy = smooth_signal(oxy_hb) smoothed_deoxy = smooth_signal(deoxy_hb) return smoothed_oxy, smoothed_deoxy ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值