👨🎓个人主页
💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
本文包括基于伴随方法的有限元分析和 p 范数应力敏感性,并通过有限差分近似进行验证。
摘要
本文旨在研究基于应力的拓扑优化问题的高效3D灵敏度分析方法。通过结合伴随方法的有限元分析和p范数应力敏感性,本文提出了一种高效计算灵敏度的方法,并使用有限差分近似进行验证。此外,本文采用移动渐近线方法(MMA)作为非线性优化器来求解优化问题。
1. 引言
拓扑优化是一种在给定设计区域内寻找材料最优分布的方法,广泛应用于航空航天、汽车、机械制造等领域。基于应力的拓扑优化旨在优化结构,使其在满足应力约束的同时,达到最小的材料用量或其他目标函数。然而,3D应力灵敏度分析的计算量巨大,成为制约拓扑优化效率的关键因素之一。
2. 方法论
2.1 基于伴随方法的有限元分析
伴随方法是一种高效的灵敏度分析技术,通过引入伴随变量,将复杂的灵敏度计算转化为求解一组伴随方程。在有限元分析中,伴随方法能够显著减少计算量,提高灵敏度分析的效率。
2.2 p范数应力敏感性
传统的应力灵敏度分析通常关注单个应力点的灵敏度,但这种方法在处理复杂应力分布时存在局限性。本文采用p范数来度量应力分布的整体敏感性,从而更全面地捕捉结构对应力约束的响应。
2.3 有限差分近似验证
为了验证伴随方法和p范数应力敏感性的准确性,本文采用有限差分近似方法进行对比验证。有限差分近似是一种数值微分方法,通过计算相邻设计变量变化引起的目标函数变化来近似灵敏度。
2.4 移动渐近线方法(MMA)优化器
MMA是一种非线性规划算法,特别适用于处理具有复杂约束条件的优化问题。本文采用MMA作为优化器,以求解基于应力的拓扑优化问题。
3. 实现步骤
- 建立有限元模型:根据设计区域和边界条件,建立3D有限元模型。
- 求解状态方程:采用有限元方法求解结构应力场。
- 计算伴随方程:引入伴随变量,求解伴随方程以计算灵敏度。
- 计算p范数应力敏感性:根据应力分布计算p范数应力敏感性。
- 有限差分近似验证:选择部分设计变量进行有限差分近似验证。
- 优化求解:采用MMA优化器进行迭代优化,直至满足收敛条件。
4. 结果与分析
4.1 灵敏度分析结果
通过伴随方法和p范数应力敏感性计算得到的灵敏度结果,能够准确反映设计变量对应力约束的影响。与有限差分近似结果对比,验证了伴随方法和p范数应力敏感性的准确性。
4.2 优化结果
采用MMA优化器进行迭代优化后,得到了满足应力约束的最优拓扑结构。与优化前相比,材料用量显著减少,结构性能得到提升。
5. 结论与展望
本文提出了一种基于伴随方法和p范数应力敏感性的高效3D灵敏度分析方法,并采用MMA优化器进行求解。研究结果表明,该方法能够显著提高拓扑优化的效率,得到满足应力约束的最优拓扑结构。未来研究将进一步探索更高效、更准确的灵敏度分析方法,以及更广泛的应用场景。
本文档概述了基于应力的拓扑优化的高效3D灵敏度分析方法的研究内容、方法论、实现步骤、结果与分析以及结论与展望。通过结合伴随方法、p范数应力敏感性和MMA优化器,本文为3D拓扑优化提供了一种高效、准确的解决方案。
📚2 运行结果
部分代码:
clc
clear
close('all');
warning('off','all')
nelx=200;
nely=60;
nelz=1;
x=0.3*ones(nely,nelx,nelz);
[Hs,H]=prepare_filter(2.5,nelx,nely,nelz);
m =1;
epsimin = 0.0000001;
n=length(x(:));
xval=x(:);
xold1 = xval;
xold2 = xval;
xlb = 1e-3*ones(n,1);
xub = 1*ones(n,1);
xmin = xlb;
xmax = xub;
low = xlb;
upp = xub;
c = [1e4]';
d = [0]';
a0 = 0;
a = [0]';
raa0 = 0.0001;
raa = 0.0001;
raa0eps = 0.0000001;
raaeps = 0.0000001;
outeriter = 0;
maxoutit = 120;
kkttol = 0;
x_his=zeros(nelx*nely*nelz,maxoutit);
if outeriter < 0.5
[f0val,df0dx,fval,dfdx]=stress_minimize(xval,Hs,H);
innerit=0;
outvector1 = [outeriter innerit xval'];
outvector2 = [f0val fval'];
end
kktnorm = kkttol+1;
outit = 0;
while outit < maxoutit
outit = outit+1;
outeriter = outeriter+1;
%%%% The parameters low, upp, raa0 and raa are calculated:
[low,upp,raa0,raa] = ...
asymp(outeriter,n,xval,xold1,xold2,xmin,xmax,low,upp, ...
raa0,raa,raa0eps,raaeps,df0dx,dfdx);
[xmma,ymma,zmma,lam,xsi,eta,mu,zet,s,f0app,fapp] = ...
gcmmasub(m,n,outeriter,epsimin,xval,xmin,xmax,low,upp, ...
raa0,raa,f0val,df0dx,fval,dfdx,a0,a,c,d);
xold2 = xold1;
xold1 = xval;
xval = xmma;
[f0val,df0dx,fval,dfdx]=stress_minimize(xval,Hs,H);
% PRINT RESULTS
fprintf(' It.:%5i P-norm Stress.:%11.4f Vol.:%7.3f \n',outit,f0val, ...
mean(xval(:)));
%%%% The residual vector of the KKT conditions is calculated:
[residu,kktnorm,residumax] = ...
kktcheck(m,n,xmma,ymma,zmma,lam,xsi,eta,mu,zet,s, ...
xmin,xmax,df0dx,fval,dfdx,a0,a,c,d);
outvector1 = [outeriter innerit xval'];
outvector2 = [f0val fval'];
x_his(:,outit)=xmma;
end
🎉3 参考文献
部分理论来源于网络,如有侵权请联系删除。
[1]荣见华,姜节胜,胡德文,颜东煌,付俊庆.基于应力及其灵敏度的结构拓扑渐进优化方法[J].力学学报,2003(05):584-591.