💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
基于遗传算法的交叉口绿灯时间优化研究
一、研究背景与目标
随着城市化进程加速,交通拥堵成为全球性问题。交叉口作为交通网络的瓶颈节点,其信号灯配时优化至关重要。传统固定配时方案难以适应动态交通需求,而遗传算法(Genetic Algorithm, GA)因其全局搜索能力和多目标优化特性,成为交通信号优化的核心工具。研究目标是通过GA动态调整绿灯时间,实现以下多目标优化:
- 减少平均延误(如韦伯斯特延误模型);
- 提高通行能力(如最大化单位周期内的车辆通过量);
- 降低环境影响(如减少CO₂和燃料消耗);
- 平衡多相位需求(如避免某相位绿灯时间过长导致其他方向拥堵)。
二、遗传算法在绿灯时间优化中的应用框架
1. 问题建模与编码
- 染色体设计:将各相位的绿灯时间编码为基因序列。例如,四相位交叉口可表示为g=(g1,g2,g3,g4),其中gigi为第ii相位的绿灯时长。
- 约束条件:
- 绿灯时间范围:gmin≤gi≤gmax(通常gmin=15s,gmax=60s);
- 周期总时长:∑gi+黄灯时间≤Cmax(通常Cmax=180s)。
2. 适应度函数设计
适应度函数需综合多目标指标,常见方法包括:
- 加权求和法:将延误、排放等指标归一化后加权,如F=w1⋅D+w2⋅EF=w1⋅D+w2⋅E(DD为延误,EE为排放);
- Pareto最优解集:通过非支配排序(如NSGA-III)生成多目标优化解。
3. 遗传操作参数设置
- 交叉率与变异率:交叉率建议0.6-0.8,变异率≤0.05,避免过早收敛;
- 种群规模:通常50-100个体,复杂场景可扩展至200;
- 选择策略:轮盘赌选择、锦标赛选择或退火选择(用于避免局部最优)。
三、优化效果与案例分析
1. 典型案例:台湾台中市台湾大道交叉口
- 问题:早晚高峰拥堵严重,周期时长180秒仍无法满足需求;
- 优化结果:通过GA调整相位绿灯时间,延误减少22%,通行能力提升18%。
2. 仿真对比实验
- 燃料消耗:GA优化后燃料消耗从363.98升/周期降至272.49升(降幅33.6%);
- 排放指标:CO排放减少11.08%,CO₂排放下降14.96%。
四、关键约束与多目标权衡
- 饱和度控制:通过动态调整周期时长(步长5秒),确保各相位饱和度在0.85-0.95之间;
- 行人安全:设置最小绿灯时间(如15秒)保障行人过街;
- 公交优先:在适应度函数中增加公交延误权重,或采用专用相位。
五、算法改进与扩展
- 混合算法:结合粒子群优化(PSO)或模拟退火(SA),提升收敛速度。例如,SA的温度参数TT控制搜索范围,初始温度设为100,逐步降温至30,避免局部最优;
- 实时数据集成:利用LiDAR或视频检测器采集实时流量,动态更新适应度函数;
- 多路口协调:将单点优化扩展至区域路网,采用分层GA或分布式优化框架。
六、温度参数在优化中的潜在作用
尽管交通信号优化中“温度”并非直接变量,但在以下场景可能相关:
- 模拟退火中的温度衰减:用于控制解空间的探索与利用平衡,如初始高温允许接受较差解,逐步降温聚焦局部搜索;
- 环境温度对交通流影响:极端温度可能改变出行模式(如夏季高峰偏移),需在历史数据训练中考虑季节性调整(注:现有文献未明确涉及此点,需进一步研究)。
七、未来研究方向
- 深度强化学习结合:利用DQN或A3C算法处理高维状态空间;
- 车路协同(V2I) :通过车载通信实时反馈排队长度,提升优化响应速度;
- 低碳目标强化:将可再生能源充电站布局与信号优化耦合,降低全生命周期排放。
八、总结
遗传算法在交叉口绿灯时间优化中展现出显著优势,尤其在多目标动态调整和复杂约束处理方面。通过合理设计适应度函数、优化遗传操作参数,并集成实时数据与混合算法,可进一步提升交通效率与可持续性。未来需在智能化、协同化方向深化研究,以应对超大城市交通网络的挑战。
📚2 运行结果
部分代码:
%% Problem Formulation
FitnessFunction=@(C,g,x,c) TDi(C,g,x,c); % FitnessFunction
nLights=4; % Number of Traffic Lights
nIntersections=1; % Number of Intersections (static as 1 intersection)
VarSize=[1 nIntersections*nLights]; % Decision Chromosome genes based on number of Intersections
greenMin= 10; % Lower bound of GREEN LIGHT
greenMax= 60; % Upper bound of GREEN LIGHT
Cyclemin=60; % Lower bound of CYCLE
Cyclemax=180 ;
RoadcapacityNSWE=[20,20,20,20]; % Road Capacity for NSWE respectivelly
CarsNSWE=[20,20,11,17];
RoadCongestion1NSWE=RoadcapacityNSWE-CarsNSWE; % congestion according to free road spaces
RoadCongestionNSWE=RoadCongestion1NSWE./RoadcapacityNSWE; % Volume/Capacity RATIO
carpass=5;
%% Genetic Algorithm Parameters
MaxIt=25; % Maximum Number of Iterations
nPop=400; % Population Size
pc=0.5; % Crossover Percentage
nc=2*round(pc*nPop/2); % Number of Offsprings (parents)
pm=0.02; % Mutation Percentage
nm=round(pm*nPop); % Number of Mutants
mu=0.1; % Mutation Rate
pinv=0.2;
ninv=round(pinv*nPop);
beta=8; % Selection Pressure
%% Initialization
% Individual Structure
empty_individual.GreenNSWE=[];
empty_individual.TotalDelay=[];
% Population Structure
pop=repmat(empty_individual,nPop,1);
% Initialize Population
i=1;
current_cycle=160-12; %estw kiklos 160 seconds - 12 seconds gia kitrino
while i<=nPop
% Initialize Individual
pop(i).GreenNSWE=randi([greenMin greenMax],VarSize);
% Cycle time rules
% if(sum(CarsNSWE)<10)
% current_cycle(i)=randi([Cyclemin 80]);
% elseif(sum(CarsNSWE)<15)
% current_cycle(i)=randi([80 100]);
% elseif(sum(CarsNSWE)<20)
% current_cycle(i)=randi([100 120]);
% elseif(sum(CarsNSWE)<25)
% current_cycle(i)=randi([120 140]);
% elseif(sum(CarsNSWE)<30)
% current_cycle(i)=randi([140 160]);
% else
% current_cycle=180;
% end
% current_cycle=current_cycle(:);
if(sum(pop(i).GreenNSWE)>current_cycle)
continue;
end
% Individual Evaluation from Fitness Function
for j=1:nLights
% Measure Delay for each traffic light with current congestion
pop(i).TotalDelay(j)=FitnessFunction(current_cycle,pop(i).GreenNSWE(j),RoadCongestionNSWE(j),RoadcapacityNSWE(j));
end
% Summation of Total Delays quotients
pop(i).TotalDelay= real(sum(pop(i).TotalDelay));
i=i+1;
end
% Sort Population
TotalDelay=[pop.TotalDelay];
[TotalDelay, SortOrder]=sort(TotalDelay);
pop=pop(SortOrder);
% Store Best Solution
BestSol=pop(1);
% Store Best Fitness
BestDelay=pop(1).TotalDelay;
% Worst Fitness
WorstDelay=pop(end).TotalDelay;
disp(['FIRST Population..........Best TotalDelay = ' num2str(BestDelay)]);
fprintf('\n')
disp('Green Timings in seconds:');
disp([' North Green time = ' num2str(BestSol.GreenNSWE(1))]);
fprintf('\n')
disp([' South Green time = ' num2str(BestSol.GreenNSWE(2))]);
fprintf('\n')
disp([' West Green time = ' num2str(BestSol.GreenNSWE(3))]);
fprintf('\n')
disp([' East Green time = ' num2str(BestSol.GreenNSWE(4))]);
fprintf('\n')
%% Loop For Number of Iterations
count=0;
for it=1:MaxIt
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]王曈,刘洋.5G智能交通背景下交通信号灯配时优化研究——基于灰色预测模型和遗传算法[J].智能计算机与应用, 2020, 000(007):P.185-191.
[2]薛靖.基于预信号的交叉口公交信号优先控制方法研究[J].[2023-12-17].
[3]马浩钦.基于遗传算法的智能交通灯控制研究[J].电子制作, 2019(24):3.DOI:CNKI:SUN:DZZZ.0.2019-24-012.