【优化交叉口的绿灯时间】基于遗传算法的交通灯管理研究(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

基于遗传算法的交叉口绿灯时间优化研究

一、研究背景与目标

二、遗传算法在绿灯时间优化中的应用框架

1. 问题建模与编码

2. 适应度函数设计

3. 遗传操作参数设置

三、优化效果与案例分析

1. 典型案例:台湾台中市台湾大道交叉口

2. 仿真对比实验

四、关键约束与多目标权衡

五、算法改进与扩展

六、温度参数在优化中的潜在作用

七、未来研究方向

八、总结

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


💥1 概述

基于遗传算法的交叉口绿灯时间优化研究

一、研究背景与目标

随着城市化进程加速,交通拥堵成为全球性问题。交叉口作为交通网络的瓶颈节点,其信号灯配时优化至关重要。传统固定配时方案难以适应动态交通需求,而遗传算法(Genetic Algorithm, GA)因其全局搜索能力和多目标优化特性,成为交通信号优化的核心工具。研究目标是通过GA动态调整绿灯时间,实现以下多目标优化:

  1. 减少平均延误(如韦伯斯特延误模型);
  2. 提高通行能力(如最大化单位周期内的车辆通过量);
  3. 降低环境影响(如减少CO₂和燃料消耗);
  4. 平衡多相位需求(如避免某相位绿灯时间过长导致其他方向拥堵)。

二、遗传算法在绿灯时间优化中的应用框架
1. 问题建模与编码
  • 染色体设计:将各相位的绿灯时间编码为基因序列。例如,四相位交叉口可表示为g=(g1,g2,g3,g4),其中gigi​为第ii相位的绿灯时长。
  • 约束条件
    • 绿灯时间范围:gmin≤gi≤gmax(通常gmin=15s,gmax=60s);
    • 周期总时长:∑gi+黄灯时间≤Cmax(通常Cmax=180s)。
2. 适应度函数设计

适应度函数需综合多目标指标,常见方法包括:

  • 加权求和法:将延误、排放等指标归一化后加权,如F=w1⋅D+w2⋅EF=w1​⋅D+w2​⋅E(DD为延误,EE为排放);
  • Pareto最优解集:通过非支配排序(如NSGA-III)生成多目标优化解。
3. 遗传操作参数设置
  • 交叉率与变异率:交叉率建议0.6-0.8,变异率≤0.05,避免过早收敛;
  • 种群规模:通常50-100个体,复杂场景可扩展至200;
  • 选择策略:轮盘赌选择、锦标赛选择或退火选择(用于避免局部最优)。

三、优化效果与案例分析
1. 典型案例:台湾台中市台湾大道交叉口
  • 问题:早晚高峰拥堵严重,周期时长180秒仍无法满足需求;
  • 优化结果:通过GA调整相位绿灯时间,延误减少22%,通行能力提升18%。
2. 仿真对比实验
  • 燃料消耗:GA优化后燃料消耗从363.98升/周期降至272.49升(降幅33.6%);
  • 排放指标:CO排放减少11.08%,CO₂排放下降14.96%。

四、关键约束与多目标权衡
  1. 饱和度控制:通过动态调整周期时长(步长5秒),确保各相位饱和度在0.85-0.95之间;
  2. 行人安全:设置最小绿灯时间(如15秒)保障行人过街;
  3. 公交优先:在适应度函数中增加公交延误权重,或采用专用相位。

五、算法改进与扩展
  1. 混合算法:结合粒子群优化(PSO)或模拟退火(SA),提升收敛速度。例如,SA的温度参数TT控制搜索范围,初始温度设为100,逐步降温至30,避免局部最优;
  2. 实时数据集成:利用LiDAR或视频检测器采集实时流量,动态更新适应度函数;
  3. 多路口协调:将单点优化扩展至区域路网,采用分层GA或分布式优化框架。

六、温度参数在优化中的潜在作用

尽管交通信号优化中“温度”并非直接变量,但在以下场景可能相关:

  1. 模拟退火中的温度衰减:用于控制解空间的探索与利用平衡,如初始高温允许接受较差解,逐步降温聚焦局部搜索;
  2. 环境温度对交通流影响:极端温度可能改变出行模式(如夏季高峰偏移),需在历史数据训练中考虑季节性调整(注:现有文献未明确涉及此点,需进一步研究)。

七、未来研究方向
  1. 深度强化学习结合:利用DQN或A3C算法处理高维状态空间;
  2. 车路协同(V2I) :通过车载通信实时反馈排队长度,提升优化响应速度;
  3. 低碳目标强化:将可再生能源充电站布局与信号优化耦合,降低全生命周期排放。

八、总结

遗传算法在交叉口绿灯时间优化中展现出显著优势,尤其在多目标动态调整和复杂约束处理方面。通过合理设计适应度函数、优化遗传操作参数,并集成实时数据与混合算法,可进一步提升交通效率与可持续性。未来需在智能化、协同化方向深化研究,以应对超大城市交通网络的挑战。

📚2 运行结果

部分代码:

%% Problem Formulation

FitnessFunction=@(C,g,x,c) TDi(C,g,x,c);     % FitnessFunction

nLights=4;                                   % Number of Traffic Lights
nIntersections=1;                            % Number of Intersections (static as 1 intersection)

VarSize=[1 nIntersections*nLights];          % Decision Chromosome genes based on number of Intersections

greenMin= 10;                                % Lower bound of GREEN LIGHT
greenMax= 60;                                % Upper bound of GREEN LIGHT
Cyclemin=60;                                 % Lower bound of CYCLE
Cyclemax=180 ;
RoadcapacityNSWE=[20,20,20,20];              % Road Capacity for NSWE respectivelly
CarsNSWE=[20,20,11,17];
RoadCongestion1NSWE=RoadcapacityNSWE-CarsNSWE;              % congestion according to free road spaces
RoadCongestionNSWE=RoadCongestion1NSWE./RoadcapacityNSWE;   %  Volume/Capacity RATIO
carpass=5;
%% Genetic Algorithm Parameters

MaxIt=25;                                  % Maximum Number of Iterations

nPop=400;                                     % Population Size

pc=0.5;                                      % Crossover Percentage
nc=2*round(pc*nPop/2);                       % Number of Offsprings (parents)

pm=0.02;                                      % Mutation Percentage
nm=round(pm*nPop);                           % Number of Mutants
mu=0.1;                                      % Mutation Rate
 
pinv=0.2;
ninv=round(pinv*nPop);

beta=8;                                      % Selection Pressure
   
%% Initialization

% Individual Structure
empty_individual.GreenNSWE=[];
empty_individual.TotalDelay=[];

% Population Structure
pop=repmat(empty_individual,nPop,1);

% Initialize Population
i=1;
current_cycle=160-12; %estw kiklos 160 seconds - 12 seconds gia kitrino

while i<=nPop  
    
    % Initialize Individual
    pop(i).GreenNSWE=randi([greenMin greenMax],VarSize);
    
    % Cycle time rules
%     if(sum(CarsNSWE)<10)
%         current_cycle(i)=randi([Cyclemin 80]);
%     elseif(sum(CarsNSWE)<15)
%         current_cycle(i)=randi([80 100]);
%     elseif(sum(CarsNSWE)<20)
%         current_cycle(i)=randi([100 120]);
%     elseif(sum(CarsNSWE)<25)
%         current_cycle(i)=randi([120 140]);
%     elseif(sum(CarsNSWE)<30)
%         current_cycle(i)=randi([140 160]);
%     else
%         current_cycle=180;
%      end
%     current_cycle=current_cycle(:);

    if(sum(pop(i).GreenNSWE)>current_cycle)
          continue;
    end
    
    % Individual Evaluation from Fitness Function
    for j=1:nLights
        % Measure Delay for each traffic light with current congestion
        pop(i).TotalDelay(j)=FitnessFunction(current_cycle,pop(i).GreenNSWE(j),RoadCongestionNSWE(j),RoadcapacityNSWE(j));
    end   
    % Summation of Total Delays quotients
    pop(i).TotalDelay= real(sum(pop(i).TotalDelay));
    i=i+1;
end

% Sort Population
TotalDelay=[pop.TotalDelay];
[TotalDelay, SortOrder]=sort(TotalDelay);
pop=pop(SortOrder);

% Store Best Solution
BestSol=pop(1);

% Store Best Fitness
BestDelay=pop(1).TotalDelay;

% Worst Fitness
WorstDelay=pop(end).TotalDelay;

disp(['FIRST Population..........Best TotalDelay = ' num2str(BestDelay)]);
    fprintf('\n')
    disp('Green Timings in seconds:');
    disp(['  North Green time = ' num2str(BestSol.GreenNSWE(1))]);
    fprintf('\n')
    disp(['  South Green time = ' num2str(BestSol.GreenNSWE(2))]);
    fprintf('\n')
    disp(['  West Green time = ' num2str(BestSol.GreenNSWE(3))]);
    fprintf('\n')
    disp(['  East Green time = ' num2str(BestSol.GreenNSWE(4))]);
    fprintf('\n')

%% Loop For Number of Iterations
count=0;
for it=1:MaxIt

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]王曈,刘洋.5G智能交通背景下交通信号灯配时优化研究——基于灰色预测模型和遗传算法[J].智能计算机与应用, 2020, 000(007):P.185-191.

[2]薛靖.基于预信号的交叉口公交信号优先控制方法研究[J].[2023-12-17].

[3]马浩钦.基于遗传算法的智能交通灯控制研究[J].电子制作, 2019(24):3.DOI:CNKI:SUN:DZZZ.0.2019-24-012.

🌈4 Matlab代码实现

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值