generalized Bender’s decomposition

简要用途介绍

Generalized Bender’s decomposition 是一种数学优化方法,用于求解具有复杂约束条件和目标函数的非线性优化问题。它基于Benders分解(Bender’s decomposition)的思想,将原始问题分解为一个主问题(master problem)和一个或多个子问题(subproblem)。

在generalized Bender’s decomposition中,主问题通常是线性规划问题,而子问题是非线性规划问题。通过迭代求解主问题和子问题,逐步逼近原始问题的最优解。

具体步骤如下:

  1. 初始化:给定一个初始解,通常是一个可行解或者随机解。
  2. 求解子问题:固定主问题的解,求解子问题,得到子问题的最优解和对应的目标函数值。
  3. 更新主问题:将子问题的最优解和目标函数值作为参数,更新主问题的目标函数和约束条件。
  4. 求解主问题:求解更新后的主问题,得到新的解。
  5. 判断收敛:如果满足收敛条件(如目标函数值的变化小于某个阈值),则停止迭代;否则,返回步骤2。

generalized Bender’s decomposition的优点是可以处理具有复杂约束条件和目标函数的非线性优化问题,同时可以降低计算复杂度。但是,它的缺点是需要多次迭代,且收敛速度可能较慢。

给出公式

原问题

假设原问题是一个混合整数规划问题,可以表示为:

min ⁡ { f ( x , y ) : ( x , y ) ∈ Z } \min \{ f(x, y) : (x, y) \in Z \} min{f(x,y):(x,y)Z}

其中,( x ) 是整数变量,( y ) 是连续变量,( Z ) 是可行域。

主问题

主问题是一个松弛的优化问题,通常只涉及整数变量 ( x )。它的形式为:

min ⁡ { θ + g ( x ) : x ∈ X } \min \{ \theta + g(x) : x \in X \} min{θ+g(x):xX}

其中,( \theta ) 是一个新的变量,表示子问题的目标函数值的上界,( g(x) ) 是原问题中只与 ( x ) 相关的部分,( X ) 是 ( x ) 的可行域。

子问题

子问题是一个参数化的优化问题,针对主问题的解 ( x ) 求解 ( y ) 的最优值。形式为:

min ⁡ { h ( x , y ) : y ∈ Y ( x ) } \min \{ h(x, y) : y \in Y(x) \} min{h(x,y):yY(x)}

其中,( h(x, y) ) 是原问题的目标函数,只涉及 ( y ) 的部分,( Y(x) ) 是对给定 ( x ) 的 ( y ) 的可行域。

迭代过程

GBD 通过以下步骤迭代求解:

  1. 求解主问题:给定当前的 ( \theta ),求解主问题得到整数解 ( x^k )。

x k ← arg ⁡ min ⁡ { θ + g ( x ) : x ∈ X } x^k \leftarrow \arg \min \{ \theta + g(x) : x \in X \} xkargmin{θ+g(x):xX}

  1. 求解子问题:针对主问题的解 ( x^k ),求解子问题得到连续变量 ( y^k ) 及其对应的目标函数值 ( \theta^k )。

( y k , θ k ) ← arg ⁡ min ⁡ { h ( x k , y ) : y ∈ Y ( x k ) } (y^k, \theta^k) \leftarrow \arg \min \{ h(x^k, y) : y \in Y(x^k) \} (yk,θk)argmin{h(xk,y):yY(xk)}

  1. 更新主问题:利用子问题的解,更新主问题的约束,加入新的割平面(cut),以改进主问题的解。

θ ≥ h ( x k , y k ) \theta \geq h(x^k, y^k) θh(xk,yk)

  1. 收敛性检查:检查当前解是否满足预设的收敛条件。如果满足,则停止迭代,否则继续迭代。

收敛准则

GBD 通常通过以下收敛准则判断迭代是否结束:

  • 主问题和子问题的目标函数值收敛到同一个值。
  • 迭代过程中目标函数值的变化幅度小于预设的阈值。

LaTeX 代码

% 原问题
min ⁡ { f ( x , y ) : ( x , y ) ∈ Z } \min \{ f(x, y) : (x, y) \in Z \} min{f(x,y):(x,y)Z}

% 主问题
min ⁡ { θ + g ( x ) : x ∈ X } \min \{ \theta + g(x) : x \in X \} min{θ+g(x):xX}

% 子问题
min ⁡ { h ( x , y ) : y ∈ Y ( x ) } \min \{ h(x, y) : y \in Y(x) \} min{h(x,y):yY(x)}

% 迭代过程
\begin{enumerate}
\item \textbf{求解主问题}:给定当前的 (\theta),求解主问题得到整数解 (x^k)。
x k ← arg ⁡ min ⁡ { θ + g ( x ) : x ∈ X } x^k \leftarrow \arg \min \{ \theta + g(x) : x \in X \} xkargmin{θ+g(x):xX}
\item \textbf{求解子问题}:针对主问题的解 (x^k),求解子问题得到连续变量 (y^k) 及其对应的目标函数值 (\theta^k)。
( y k , θ k ) ← arg ⁡ min ⁡ { h ( x k , y ) : y ∈ Y ( x k ) } (y^k, \theta^k) \leftarrow \arg \min \{ h(x^k, y) : y \in Y(x^k) \} (yk,θk)argmin{h(xk,y):yY(xk)}
\item \textbf{更新主问题}:利用子问题的解,更新主问题的约束,加入新的割平面(cut),以改进主问题的解。
θ ≥ h ( x k , y k ) \theta \geq h(x^k, y^k) θh(xk,yk)
\item \textbf{收敛性检查}:检查当前解是否满足预设的收敛条件。如果满足,则停止迭代,否则继续迭代。
\end{enumerate}

通过这个 LaTeX 代码,你可以在文档中展示 Generalized Bender’s Decomposition 的基本原理和公式。

重新给出公式

Generalized Bender’s decomposition是一种用于求解混合整数线性规划(Mixed Integer Linear Programming, MILP)问题的分解方法。它通过引入辅助变量和松弛约束,将原始问题转化为一系列线性规划子问题,并通过迭代优化这些子问题来逼近原始问题的最优解。

以下是Generalized Bender’s decomposition的公式化的表达:

假设我们有一个MILP问题,其目标函数为 f ( x ) f(x) f(x),其中 x x x 是决策变量向量,且 x x x 中包含整数和非整数部分。我们的目标是找到 x x x 的最优值,使得 f ( x ) f(x) f(x) 最小化或最大化。

  1. 首先,引入辅助变量 y i y_i yi,其中 i = 1 , 2 , . . . , m i = 1, 2, ..., m i=1,2,...,m,表示每个整数决策变量的松弛程度。

  2. 定义一个辅助函数 g ( x , y ) g(x, y) g(x,y),它是目标函数 f ( x ) f(x) f(x) 加上关于 y y y 的惩罚项:

    g ( x , y ) = f ( x ) + ∑ i = 1 m p i y i g(x, y) = f(x) + \sum_{i=1}^{m} p_i y_i g(x,y)=f(x)+i=1mpiyi

    其中 p i p_i pi 是对应于第 i i i 个整数决策变量的惩罚系数。

  3. 对于每个整数决策变量 x j x_j xj,引入一个松弛约束:

    x j − y j ≤ u j x_j - y_j \leq u_j xjyjuj

    其中 u j u_j uj 是一个足够大的正数,以确保 x j x_j xj 可以取到整数。

  4. 使用线性规划求解器求解以下问题:

    Minimize: g ( x , y ) g(x, y) g(x,y)

    Subject to: the original constraints of the problem, including the new relaxation constraints and any additional constraints that may be necessary.

  5. 更新 y i y_i yi 的值以反映当前线性规划解中的松弛程度。

  6. 重复步骤4和5,直到满足停止准则(例如,达到预定的迭代次数或 y i y_i yi 的变化小于某个阈值)。

  7. 最后,根据得到的 y i y_i yi 值调整整数决策变量 x j x_j xj,使其变为最接近的整数值。

通过这种方式,Generalized Bender’s decomposition逐步逼近原始MILP问题的最优解,同时避免了直接解决整数规划问题的复杂性。

  • 5
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值