第五章 图像复原与重建

本文介绍了图像复原与重建的基本原理,包括图像退化模型、噪声模型及其概率密度函数。详细讨论了空间滤波器如均值、几何均值和中值滤波器,以及频率域滤波在消除噪声中的应用。同时,探讨了退化函数的估计方法,如观察法、试验法和建模法,并提到了逆滤波和最小均方误差滤波(维纳滤波)等复原策略。
摘要由CSDN通过智能技术生成

5图像复原与重建

5.1图像退化/复原过程的模型

退化图像: g ( x , y ) = h ( x , y ) ★ f ( x , y ) + η ( x , y ) g(x,y)=h(x,y)\bigstar f(x,y)+\eta(x,y) g(x,y)=h(x,y)f(x,y)+η(x,y) 写成等价的频率域表示: G ( u , v ) = H ( u , v ) F ( u , v ) + N ( u , v ) G(u,v)=H(u,v)F(u,v)+N(u,v) G(u,v)=H(u,v)F(u,v)+N(u,v)

5.2噪声模型

5.2.1噪声的空间和频率特性

频率特性是指傅里叶域中噪声的频率内容

5.2.2一些重要的噪声概率密度函数

常见密度函数:

  1. 高斯 p ( z ) = 1 2 π σ e − ( z − z ‾ ) 2 / 2 σ 2 p(z)=\frac{1}{\sqrt{2\pi}\sigma}\mathrm{e}^{-(z-\overline{z})^2/2\sigma^2} p(z)=2π σ1e(zz)2/2σ2
  2. 瑞利 p ( z ) = { 2 b ( z − a ) e − ( z − a ) 2 / b , z ≥ a 0 , z < a z ‾ = a + π b / 4 , σ 2 = b ( 4 − π ) 4 \begin{gathered} p(z)=\left\{\begin{array}{l l}{{\frac{2}{b}(z-a)e^{-(z-a)^{2}/b},}}&{{\quad z\geq a}}\\ {{0,}}&{{\quad z<a}}\end{array}\right. \\ \overline{z}=a+\sqrt{\pi b/4} , \sigma^{2}={\frac{b(4-\pi)}{4}} \end{gathered} p(z)={b2(za)e(za)2/b,0,zaz<az=a+πb/4 σ2=4b(4π)
  3. 伽马 p ( z ) = { a b z b − 1 ( b − 1 ) ! e − a z , z ≥ a 0 , z < a z ‾ = b a , σ 2 = = b a 2 \begin{aligned} p(z)={\left\{\begin{matrix}{\frac{a^{b}z^{b-1}}{(b-1)!}\mathrm{e}^{-a z},\quad}&{{z\geq a}}\\ {0,\quad}&{z<a}\end{matrix}\right.} \\ {\overline{{z}}}={\frac{b}{a}} , {\boldsymbol{\sigma}}^{2}= ={\frac{b}{a^{2}}} \end{aligned} p(z)={(b1)!abzb1eaz,0,zaz<az=ab,σ2==a2b
  4. 指数 p ( z ) = { a e − a z , z ≥ 0 0 , z < 0 z ‾ = 1 a , σ 2 = 1 a 2 \begin{aligned} p(z)={\left\{\begin{array}{l l}{a e^{-a z},}&{z{\geq}0}\\ {0,}&{z<0}\end{array}\right.} \\ {\overline{{z}}}={\frac{1}{a}} , \sigma^{2} ={\frac{1}{a^{2}}} \end{aligned} p(z)={aeaz,0,z0z<0z=a1,σ2=a21
  5. 均匀 p ( z ) = { 1 b − a , a ≤ z ≤ i 0 , else z ‾ = a + b 2 , σ 2 = ( b − a ) 2 12 \begin{aligned} p(z)=\left\{\begin{array}{l l}{{\frac{1}{b-a}}, a\leq z\leq i}\\ {0,}{\quad \text{else}}\end{array}\right. \\ \overline{z}=\frac{a+b}{2} , \sigma^{2}= \frac{(b-a)^{2}}{12} \end{aligned} p(z)={ba1,azi0,elsez=2a+b,σ2=12(ba)2
  6. 脉冲 p ( z ) = { P a , z = a P b , z = b 1 − P a − P b , else p(z)=\begin{cases}P_a,\quad&z=a\\ P_b,\quad&z=b\\ 1-P_a-P_b,\quad&\text{else}\end{cases} p(z)= Pa,Pb,1PaPb,z=az=belse

5.2.4噪声估计

均值和方差如下 z ‾ = ∑ i = 0 L − 1 z i p S ( z i ) σ 2 = ∑ i = 0 L − 1 ( z i − z → ) 2 p S ( z i ) \begin{gathered} {\overline{{z}}}=\sum_{i=0}^{L-1}z_{i}p_{S}(z_{i}) \\ \sigma^{2}=\sum_{i=0}^{L-1}(z_{i}-\overrightarrow{z})^{2}p_{S}(z_{i}) \end{gathered} z=i=0L1zipS(zi)σ2=i=0L1(ziz )2pS(zi) 可以使用均值和方差计算出参数,确定噪声函数。

5.3只存在噪声的复原——空间滤波

退化函数为: g ( x , y ) = f ( x , y ) + η ( x , y ) G ( u , v ) = F ( u , v ) + N ( u , v ) \begin{aligned} &g\left(x,y\right) =f\left(x,y\right)+\eta\left(x,y\right) \\ &G\left(u,v\right) =F(u,v)+N(u,v) \end{aligned} g(x,y)=f(x,y)+η(x,y)G(u,v)=F(u,v)+N(u,v)

5.3.1均值滤波器

算术均值滤波器: f ^ ( x , y ) = 1 m n ∑ ( s , t ) ∈ S x y g ( s , t ) \hat{f}(x,y)=\frac{1}{mn}\sum_{(s,t)\in S_{xy}}g(s,t)\\ f^(x,y)=mn1(s,t)Sxyg(s,t)
几何均值滤波器: f ^ ( x , y ) = [ ∏ ( s , t ) ∈ S x y g ( s , t ) ] 1 m n \hat{f}(x,y)=\left[\prod\limits_{(s,t)\in S_{xy}}g(s,t)\right]^{\frac{1}{mn}} f^(x,y)= (s,t)Sxyg(s,t) mn1 谐波均值滤波器: f ^ ( x , y ) = m n ∑ ( s , t ) ∈ S n 1 g ( s , t ) \hat{f}(x,y)=\frac{mn}{\displaystyle\sum_{(s,t)\in S_n}\frac{1}{g(s,t)}} f^(x,y)=(s,t)Sng(s,t)1mn 逆谐波均值滤波器: f ^ ( x , y ) = ∑ ( s , t ) ∈ S x y g ( s , t ) Q + 1 ∑ ( s , t ) ∈ S x y g ( s , t ) Q \hat{f}(x,y)=\frac{\displaystyle\sum_{(s,t)\in S_{xy}}g(s,t)^{Q+1}}{\displaystyle\sum_{(s,t)\in S_{xy}}g(s,t)^{Q}} f^(x,y)=(s,t)Sxyg(s,t)Q(s,t)Sxyg(s,t)Q+1

5.3.2统计排序滤波器

中值滤波器: f ^ ( x , y ) = median ( s , t ) ∈ S x y { g ( s , t ) } \hat{f}(x,y)=\underset{(s,t)\in S_{xy}}{\text{median}}\left\{g(s,t)\right\} f^(x,y)=(s,t)Sxymedian{g(s,t)}
最大值和最小值滤波器: f ^ ( x , y ) = max ⁡ ( s , t ) ∈ S x y { g ( s , t ) } f ^ ( x , y ) = min ⁡ ( s , t ) ∈ S x y { g ( s , t ) } \hat{f}(x,y)=\max\limits_{(s,t)\in S_{xy}}\left\{g(s,t)\right\}\\\hat{f}(x,y)=\min\limits_{(s,t)\in S_{xy}}\left\{g(s,t)\right\} f^(x,y)=(s,t)Sxymax{g(s,t)}f^(x,y)=(s,t)Sxymin{g(s,t)}
中点滤波器: f ^ ( x , y ) = 1 2 [ max ⁡ ( s , t ) ∈ S x y { g ( s , t ) } + min ⁡ ( s , t ) ∈ S x y { g ( s , t ) } ] \hat{f}(x,y)=\frac{1}{2}\bigg[\max\limits_{(s,t)\in S_{xy}}\big\{g(s,t)\big\}+\min\limits_{(s,t)\in S_{xy}}\big\{g(s,t)\big\}\bigg] f^(x,y)=21[(s,t)Sxymax{g(s,t)}+(s,t)Sxymin{g(s,t)}]
修正的阿尔法均值滤波器: f ^ ( x , y ) = 1 m n − d ∑ ( s , t ) ∈ S π g r ( s , t ) \hat{f}(x,y)=\frac{1}{mn-d}\sum_{(s,t)\in S_\pi}g_r(s,t) f^(x,y)=mnd1(s,t)Sπgr(s,t)

5.3.3自适应滤波器

自适应表达式可写为 f ^ ( x , y ) = g ( x , y ) − σ η 2 σ L 2 [ g ( x , y ) − m L ] \hat{f}(x,y)=g(x,y)-\frac{\sigma_\eta^2}{\sigma_L^2}\big[g(x,y)-m_L\big] f^(x,y)=g(x,y)σL2ση2[g(x,y)mL]

5.4用频率域滤波消除周期噪声

使用带阻滤波器、带通滤波器和陷波滤波器消除周期噪声

5.6估计退化函数

方法:

  1. 观察法
  2. 试验法
  3. 数学建模法

5.6.1图像观察估计

\quad 假设给我们一幅退化图像,而没有关于退化函数 H H H的任何知识。基于图像被线性、位置不变的过程退化的假设,估计 H H H的一种方法就是从图像本身来收集信息。例如,如果图像已被模糊,则我们可以观察图像中包含样本结构的一个小矩形区域,如某—物体和背景的一部分。为了降低噪声的影响,我们可以寻找一个有很强信号内容的区域(如高对比度区域)。下一步是处理子图像以便得到尽可能不模糊的结果。例如,我们可以使用锐化滤波器对这个子图像进行锐化处理,甚至可以使用手工方法处理小区域。
\quad g s ( x , y ) g_s(x, y) gs(x,y)表示要观察的子图像,令 f s ( x , y ) f_s(x,y) fs(x,y)表示处理过的子图像(现实中,该图像是原图像在该区域的估计图像)。然后,假设噪声的影响由于选择了一个强信号区域而可以忽略,可得 H s ( u , v ) = G s ( u , v ) F ^ ( u , v ) H_{s}(u,v)=\frac{G_{s}(u,v)}{\hat{F}(u,v)} Hs(u,v)=F^(u,v)Gs(u,v)
根据这一函数特性,然后,我们可基于位置不变的假设还原完整的退化函数 H ( u , v ) H(u, v) H(u,v)。例如,假设 H ( u , v ) H(u, v) H(u,v)的径向曲线具有高斯曲线的近似形状。我们可以利用这一信息在更大比例上构建一个有基本相同形状的函数 H ( u , v ) H(u,v) H(u,v)。然后,在下面几节讨论的一种复原方法中使用 H ( u , v ) H(u,v) H(u,v)。很清楚,这是仅在特殊环境下使用的很麻烦的处理,例如复原一幅有历史价值的老照片。

5.6.2试验估计

\quad 如果可以使用与获取退化图像的设备相似的装置,从理论上讲,得到一个准确的退化估计是可能的。与退化图像类似的图像可以通过各种系统设置得到,直到这些图像退化到尽可能接近我们希望复原的程度。之后,概念是使用相同的系统对一个冲激(小亮点)成像,得到退化的冲激响应。线性空间不变系统完全由其冲激响应来表征。
一个冲激可由一个亮点来模拟,该点应尽可能亮,以便将噪声的影响降低到可以忽略的程度。回顾一下,由于冲激的傅里叶变换是一个常量、可得下式: H ( u , v ) = G ( u , v ) A H\left(u,v\right) ={\frac{G(u,v)}{A}} H(u,v)=AG(u,v)

5.6.3建模估计

该模型的通用形式为 H ( u , v ) = e − k ( u 2 + v 2 ) 5 / 6 H(u,v)=e^{-k(u^{2}+v^{2})^{5/6}} H(u,v)=ek(u2+v2)5/6

5.7逆滤波

用退化函数除退化图像的傅里叶变换G来计算初始图像傅里叶变换的估计 F ^ ( u , v ) \hat{F}(u,v) F^(u,v),即 F ^ ( u , v ) = G ( u , v ) H ( u , v ) = F ( u , v ) + N ( u , v ) H ( u , v ) \hat{F}(u,v)=\frac{G(u,v)}{H(u,v)} = F(u,v)+ \frac{N(u,v)} {H(u,v)} F^(u,v)=H(u,v)G(u,v)=F(u,v)+H(u,v)N(u,v)

5.8最小均方误差(维纳)滤波

在这一节,我讨论了一种综合了退化函数和噪声统计特征进行复原处理的方法。该方法建立在图像和噪声都是随机变量的基础上,目标是找到未污染图像f的一个估计,使它们之间的均方误差最小。这种误差度量由下式给出: e 2 = E { ( f − f ^ ) 2 } e^2=E\left\{(f-\hat{f})^2\right\} e2=E{(ff^)2}

上式中误差函数的最小值在频率域中由下式给出: F ^ ( u , v ) = [ H ∗ ( u , v ) S f ( u , v ) S f ( u , v ) ∣ H ( u , v ) ∣ 2 + S η ( u , v ) ] G ( u , v ) = [ H ∗ ( u , v ) ∣ H ( u , v ) ∣ 2 + S η ( u , v ) / S f ( u , v ) ] G ( u , v ) = [ 1 H ( u , v ) ∣ H ( u , v ) ∣ 2 ∣ H ( u , v ) ∣ 2 + S η ( u , v ) / S f ( u , v ) ] G ( u , v ) \begin{aligned} \widehat{F}_{\left(u,v\right)}& =\left[{\frac{H^{*}(u,v)S_{f}(u,v)}{S_{f}(u,v)\left|H(u,v)\right|^{2}+S_{\eta}(u,v)}}\right]G(u,v)=\left[{\frac{H^{*}(u,v)}{\left|H(u,v)\right|^{2}+S_{\eta}(u,v)/S_{f}(u,v)}}\right]G(u,v) \\ &=\Bigg[\frac{1}{H(u,v)}\frac{\left|H(u,v)\right|^{2}}{\left|H(u,v)\right|^{2}+S_{\eta}(u,v)/S_{f}(u,v)}\Bigg]G(u,v) \end{aligned} F (u,v)=[Sf(u,v)H(u,v)2+Sη(u,v)H(u,v)Sf(u,v)]G(u,v)=[H(u,v)2+Sη(u,v)/Sf(u,v)H(u,v)]G(u,v)=[H(u,v)1H(u,v)2+Sη(u,v)/Sf(u,v)H(u,v)2]G(u,v)

信噪比用下式来近似: SNR = ∑ a = 0 M − 1 ∑ v = 0 N − 1 ∣ F ( u , v ) ∣ 2 ∑ a = 0 M − 1 ∑ v = 0 N − 1 ∣ N ( u , v ) ∣ 2 \text{SNR}=\frac{\displaystyle \sum_{a=0}^{M-1}\sum_{v=0}^{N-1}\left|F(u,v)\right|^2}{\displaystyle \sum_{a=0}^{M-1}\sum_{v=0}^{N-1}\left|N(u,v)\right|^2} SNR=a=0M1v=0N1N(u,v)2a=0M1v=0N1F(u,v)2

5.10几何均值滤波

几何均值滤波形式 F ^ ( u , v ) = [ H ∗ ( u , v ) ∣ H ( u , v ) ∣ 2 ] α [ H ∗ ( u , v ) ∣ H ( u , v ) ∣ 2 + β [ S η ( u , v ) S f ( u , v ) ] ] 1 − α G ( u , v ) \hat{F}(u,v)=\left[\frac{H^*(u,v)}{\left|H(u,v)\right|^2}\right]^\alpha\left[\frac{H^*(u,v)}{\left|H(u,v)\right|^2+\beta\left[\frac{S_\eta(u,v)}{S_f(u,v)}\right]}\right]^{1-\alpha}G(u,v) F^(u,v)=[H(u,v)2H(u,v)]α H(u,v)2+β[Sf(u,v)Sη(u,v)]H(u,v) 1αG(u,v)

α = 1 \alpha=1 α=1时,该滤波器退化为逆滤波器;当 α = 0 \alpha=0 α=0时,该滤波器变为所谓的参数维纳滤波器,参数维纳滤波器在 β = 1 \beta=1 β=1时还原为标准的维纳滤波器。如果 α = 1 / 2 \alpha=1/2 α=1/2,则滤波器变成相同幂次的两个量的积,这是几何均值的定义,这样就给出了这种滤波器的命名。当 β = 1 \beta=1 β=1时,随着 α \alpha α减小到1/2 以下,滤波器的性能越来越接近逆滤波器。类似地,当 α \alpha α增大到1/2以上时,滤波器更接近维纳滤波器。当 α = 1 / 2 \alpha=1/2 α=1/2 β = 1 \beta=1 β=1时,该滤波器通常也称为谱均衡滤波器。上式在实现复原滤波时非常有用,因为它表示了合并为单个表达式的滤波器族。

  • 2
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 4
    评论
数字图像在获取的过程中,由于光学系统的像差、 光学成像衍射、 成像系统的非线性畸变、 摄影胶片的感光的非线性、 成像过程的相对运动、 大气的湍流效应、环境随机噪声等原因, 图像会产生一定程度的退化。因此,必须采取一定的方法尽可能地减少或消除图像质量的下降,恢复图像的本来面目, 这就是图像复原, 也称为图像恢复图像复原图像增强有类似的地方, 都是为了改善图像。但是它们又有着明显的不同。图像复原是试图利用退化过程的先验知识使已退化的图像恢复本来面目,即根据退化的原因, 分析引起退化的环境因素,建立相应的数学模型, 并沿着使图 像降质的逆过程恢复图像。从图像质量评价的角度来看, 图像 复原就是提高图像的可理解性。而图像增强的目的是提高视感 质量,图像增强的过程基本上是一个探索的过程, 它利用人的心理状态和视觉系统去控制图像质量, 直到人们的视觉系统满意为止。 图像复原是利用退化现象的某种先验知识,建立退化现象的数学模型,再根据模型进行反向的推演运算,以恢复原来的景物图像。因而,图像复原可以理解为图像降质过程的反向过程。建立图像复原的反向过程的数学模型,就是图像复原的主 要任务。经过反向过程的数学模型的运算,要想恢复全真的景物图像比较困难。所以, 图像复原本身往往需要有一个质量标 准, 即衡量接近全真景物图像的程度,或者说,对原图像的估 计是否到达最佳的程度。 由于引起退化的因素众多而且性质不同,为了描述图像退化过程所建立的数学模型往往多种多样,而恢复的质量标准也往往存在差异性,因此图像复原是一个复杂的数学过程,图像复原的方法、技术也各不相同。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值