线性代数笔记


线性代数

第一章 行列式

性质

[ b 1 + c 1 c 1 + a 1 a 1 + b 1 b 2 + c 2 c 2 + a 2 a 2 + b 2 b 1 + c 3 c 3 + a 3 a 3 + b 3 ] = 2 [ a 1 b 1 c 1 a 2 b 2 c 2 a 3 b 3 c 3 ] \left[ \begin{matrix} b_1 +c_1& c_1+a_1&a_1+b_1 \\ b_2 +c_2& c_2+a_2&a_2+b_2 \\ b_1 +c_3& c_3+a_3&a_3+b_3 \\ \end{matrix} \right] = 2\left[ \begin{matrix} a_1& b_1&c_1 \\ a_2& b_2&c_2 \\ a_3& b_3&c_3 \\ \end{matrix} \right] b1+c1b2+c2b1+c3c1+a1c2+a2c3+a3a1+b1a2+b2a3+b3 =2 a1a2a3b1b2b3c1c2c3
方法①: c 1 + = c 2 + c 3 c1+=c2+c3 c1+=c2+c3
方法②:完全展开,会得到八项,其中六项可以抵消

展开

余子式和代数余子式

D D D n n n阶行列式,划去第 i i i行、第 j j j列的元素,构成的 n − 1 n-1 n1阶行列式 M i j M_{ij} Mij成为余子式,称 A i j = ( − 1 ) i + j M i j A_{ij}=(-1)^{i+j}M_{ij} Aij=(1)i+jMij为代数余子式。

  • 任意一行(列)的元素*代数余子式之和等于行列式
    ∣ D ∣ = a i 1 A i 1 + a i 2 A i 2 + . . . + a i n A i n = ∑ k = 1 n a i k A i k \displaystyle |D|=a_{i1}A_{i1}+a_{i2}A_{i2}+...+a_{in}A_{in}=\sum_{k=1}^n a_{ik}A_{ik} D=ai1Ai1+ai2Ai2+...+ainAin=k=1naikAik
  • 任意一行(列)的元素*另一行(列)的代数余子式之和为零
    ∣ D ∣ = a i 1 A j 1 + a i 2 A j 2 + . . . + a i n A j n = ∑ k = 1 n a i k A j k \displaystyle |D|=a_{i1}A_{j1}+a_{i2}A_{j2}+...+a_{in}A_{jn}=\sum_{k=1}^n a_{ik}A_{jk} D=ai1Aj1+ai2Aj2+...+ainAjn=k=1naikAjk

拉普拉斯展开式

∣ A ∣ , ∣ B ∣ |A|,|B| A,B n , m n,m n,m阶行列式
[ A ∗ O B ] = [ A O ∗ B ] = ∣ A ∣ ∗ ∣ B ∣ \left[ \begin{matrix} A&* \\ O& B \\ \end{matrix} \right] =\left[ \begin{matrix} A&O \\ *& B \\ \end{matrix} \right] =|A|*|B| [AOB]=[AOB]=AB

[ B ∗ O A ] = [ B O ∗ A ] = ( − 1 ) n m ∣ A ∣ ∗ ∣ B ∣ \left[ \begin{matrix} B&* \\ O& A \\ \end{matrix} \right] =\left[ \begin{matrix} B&O \\ *& A \\ \end{matrix} \right] =(-1)^{nm}|A|*|B| [BOA]=[BOA]=(1)nmAB

范德蒙式

[ 1 1 . . . 1 x 1 x 2 . . . x n x 1 2 x 2 2 . . . x n 2 ⋮ ⋮ ⋮ x 1 n − 1 x 2 n − 1 . . . x n n − 1 ] = ∏ 1 ≤ i < j ≤ n ( x j − x i ) \left[ \begin{matrix} 1 & 1 & ...&1 \\ x_1 & x_2 &...& x_n\\ x_1^2 & x_2^2 &...& x_n^2\\ \vdots&\vdots&& \vdots \\ x_1^{n-1} & x_2^{n-1} &...& x_n^{n-1} \\ \end{matrix} \right] =\displaystyle \prod_{1\leq i<j\leq n}(x_j-x_i) 1x1x12x1n11x2x22x2n1............1xnxn2xnn1 =1i<jn(xjxi)

克拉默法则

方程组 { a 11 x 1 + a 12 x 2 + . . . + a 1 n x n = b 1 a 21 x 2 + a 22 x 2 + . . . + a 2 n x n = b 2 . . . . a n 1 x n + a n 2 x 2 + . . . + a n n x n = b n 方程组\left\{\begin{aligned} a_{11}x_1+a_{12}x_2+...+a_{1n}x_n=b_1\\ a_{21}x_2+a_{22}x_2+...+a_{2n}x_n=b_2\\ ....\\ a_{n1}x_n+a_{n2}x_2+...+a_{nn}x_n=b_n\\ \end{aligned}\right. 方程组 a11x1+a12x2+...+a1nxn=b1a21x2+a22x2+...+a2nxn=b2....an1xn+an2x2+...+annxn=bn

⇒ \Rightarrow

A = [ a 11 a 12 . . . a 1 i . . . a 1 n a 21 a 22 . . . a 2 i . . . a 2 n . . . . a n 1 a n 2 . . . a 3 i . . . a n n ] ⇒ { x i = ∣ A i ∣ ∣ A ∣ A i = [ a 11 a 12 . . . b 1 . . . a 1 n a 21 a 22 . . . b 2 . . . a 2 n . . . . a n 1 a n 2 . . . b n . . . a n n ] A= \left [\begin{matrix} a_{11} & a_{12} & ... &a_{1i} &... & a_{1n}\\ a_{21} & a_{22} & ... &a_{2i} &... & a_{2n}\\ ....\\ a_{n1} & a_{n2} & ... &a_{3i} &... & a_{nn}\\ \end{matrix}\right] \Rightarrow \left\{\begin{aligned} x_i&=\cfrac{|A_i|}{|A|}\\ A_i&=\left [\begin{matrix} a_{11} & a_{12} & ... &b_{1} &... & a_{1n}\\ a_{21} & a_{22} & ... &b_{2} &... & a_{2n}\\ ....\\ a_{n1} & a_{n2} & ... &b_{n} &... & a_{nn}\\ \end{matrix}\right] \\ \end{aligned}\right. A= a11a21....an1a12a22an2.........a1ia2ia3i.........a1na2nann xiAi=AAi= a11a21....an1a12a22an2.........b1b2bn.........a1na2nann

爪形

①化成下三角

  1. 通过第 2 2 2行消 A 12 A_{12} A12
  2. 通过第 3 3 3行消 A 13 A_{13} A13

②化成上三角

  1. 通过第 2 2 2列消 A 21 A_{21} A21
  2. 通过第 3 3 3列消 A 31 A_{31} A31

第二章 矩阵

伴随矩阵

定义

由矩阵 A A A的行列式 ∣ A ∣ |A| A所有的代数余子式构成,形如(注意下标
[ A 11 A 21 . . . A n 1 A 12 A 22 . . . A n 2 ⋮ A 1 n A 2 n . . . A n n ] \left [\begin{matrix} A_{11} & A_{21} & ... & A_{n1}\\ A_{12} & A_{22} & ... & A_{n2}\\ \vdots\\ A_{1n} & A_{2n} & ... & A_{nn}\\ \end{matrix}\right] A11A12A1nA21A22A2n.........An1An2Ann

常见公式

核心 A ∗ = ∣ A ∣ A − 1 A^*=|A|A^{-1} A=AA1
A A ∗ = A ∗ A = ∣ A ∣ E AA^*=A^*A=|A|E AA=AA=AE
( A ∗ ) − 1 = ( A − 1 ) ∗ = A ∣ A ∣ (A^*)^{-1}=(A^{-1})^*=\cfrac A{|A|} (A)1=(A1)=AA
( k A ) ∗ = k n − 1 A ∗ (kA)^*=k^{n-1}A^* (kA)=kn1A
∣ A ∗ ∣ = ∣ ∣ A ∣ A − 1 ∣ = ∣ A ∣ n ∣ A ∣ = ∣ A ∣ n − 1 |A^*|=||A|A^{-1}|=\cfrac{|A|^{n}}{|A|}=|A|^{n-1} A=∣∣AA1=AAn=An1
( A ∗ ) ∗ = ( ∣ A ∣ A − 1 ) ∗ = ∣ A ∣ n − 1 ∗ ( A − 1 ) ∗ = ∣ A ∣ n − 1 ∗ A ∣ A ∣ = ∣ A ∣ n − 2 A (A^*)^*=(|A|A^{-1})^*=|A|^{n-1}*(A^{-1})^*=|A|^{n-1}*\cfrac A{|A|}=|A|^{n-2}A (A)=(AA1)=An1(A1)=An1AA=An2A

可逆矩阵

A ∗ A − 1 = A − 1 ∗ A = E A*A^{-1}=A^{-1}*A=E AA1=A1A=E
A A A可逆 ⇔ \Leftrightarrow ∣ A ∣ ≠ 0 |A| \neq 0 A=0

常见公式

∣ A − 1 ∣ = 1 ∣ A ∣ |A^{-1}|=\cfrac 1{|A|} A1=A1
( k A ) − 1 = A − 1 k (kA)^{-1}=\cfrac {A^{-1}}k (kA)1=kA1
( A B ) − 1 = B − 1 A − 1 (AB)^{-1}=B^{-1}A^{-1} (AB)1=B1A1
    ( A B C . . . Z ) − 1 = ( B C . . . Z ) − 1 A − 1 = ( C . . . Z ) − 1 B − 1 A − 1 = Z − 1 . . . C − 1 B − 1 A − 1 (ABC...Z)^{-1}=(BC...Z)^{-1}A^{-1}=(C...Z)^{-1}B^{-1}A^{-1}=Z^{-1}...C^{-1}B^{-1}A^{-1} (ABC...Z)1=(BC...Z)1A1=(C...Z)1B1A1=Z1...C1B1A1
( A + B ) − 1 ≠ A − 1 + B − 1 (A+B)^{-1} \neq A^{-1}+B^{-1} (A+B)1=A1+B1

解法

  • A − 1 = A ∗ ∣ A ∣ A^{-1}=\cfrac {A^*}{|A|} A1=AA
  • 初等变换 ( A ∣ E ) → ( E ∣ A − 1 ) (A | E) \rightarrow (E|A^{-1}) (AE)(EA1)
  • 分块
    [ B O O C ] − 1 = [ B − 1 O O C − 1 ] ; [ O B C O ] − 1 = [ O C − 1 B − 1 O ] \left[ \begin{matrix} B & O \\ O & C \\ \end{matrix} \right]^{-1} = \left[ \begin{matrix} B^{-1} & O \\ O & C^{-1} \\ \end{matrix} \right]; \left[ \begin{matrix} O & B \\ C & O \\ \end{matrix} \right]^{-1} = \left[ \begin{matrix} O & C^{-1} \\ B^{-1} & O \\ \end{matrix} \right] [BOOC]1=[B1OOC1];[OCBO]1=[OB1C1O]

初等变换,初等矩阵

由单位阵经过一次变换得到的矩阵是初等矩阵

定义

  • 倍乘初等矩阵 E ( i ( k ) ) E(i(k)) E(i(k))
    E E E的第 i i i行(列)乘 k k k
  • 互换初等矩阵 E ( i , j ) E(i,j) E(i,j)
    E E E的第 i i i行(列)和第 j j j行(列)交换
  • 倍加初等矩阵 E ( i j ( k ) ) E(ij(k)) E(ij(k))
    E E E的第 i i i + = += += j j j行的 k k k
    E E E的第 j j j + = += += i i i列的 k k k倍)

性质

  • P A ( A P ) PA(AP) PA(AP)相当于对 A A A进行相应的初等行(列)变换
  • E ( i ( k ) ) − 1 = E ( i ( 1 k ) ) ; E ( i , j ) − 1 = E ( i , j ) ; E ( i j ( k ) ) − 1 = E ( i j ( − k ) ) E(i(k))^{-1}=E(i(\cfrac{1}k{}));E(i,j)^{-1}=E(i,j);E(ij(k))^{-1}=E(ij(-k)) E(i(k))1=E(i(k1));E(i,j)1=E(i,j);E(ij(k))1=E(ij(k))

第三章向量

a ⃗ \vec{a} a 表示n维向量

线性相关

a ⃗ 1 , a ⃗ 2 , . . . , a ⃗ m \vec{a}_1,\vec{a}_2,...,\vec{a}_m a 1,a 2,...,a m线性相关,则至少一个向量可以由其他向量表示出来: a ⃗ x = k 1 a ⃗ 1 + k 2 a ⃗ 2 + . . . + k x − 1 a ⃗ x − 1 + k x + 1 a ⃗ x + 1 + . . . + k m a ⃗ m \vec{a}_x=k_1\vec{a}_1+k_2\vec{a}_2+...+k_{x-1}\vec{a}_{x-1}+k_{x+1}\vec{a}_{x+1}+...+k_m\vec{a}_m a x=k1a 1+k2a 2+...+kx1a x1+kx+1a x+1+...+kma m即,存在不全为0 k 1 , k 2 , . . . , k m k_1,k_2,...,k_m k1,k2,...,km使得
k 1 a ⃗ 1 + k 2 a ⃗ 2 + . . . + k m a ⃗ m = 0 ⃗ k_1\vec{a}_1+k_2\vec{a}_2+... +k_m\vec{a}_m=\vec{0} k1a 1+k2a 2+...+kma m=0

  • 任何 n + 1 n+1 n+1 n n n维向量必然线性相关
  • n ∗ m n*m nm矩阵,化简后,存在行全为 0 0 0

    m=n时,其行列式等于0

向量组和矩阵的秩

向量组
向量组的极大线性无关组的向量个数称为向量组的秩

矩阵
r ( A + B ) ≤ r ( A ) + r ( B ) r(A+B) \leq r(A)+r(B) r(A+B)r(A)+r(B)
r ( A B ) ≤ min ⁡ ( r ( A ) , r ( B ) ) r(AB)\leq \min(r(A),r(B)) r(AB)min(r(A),r(B))
max ⁡ ( r ( A ) , r ( B ) ) ≤ r ( A , B ) ≤ r ( A ) + r ( B ) \max(r(A),r(B)) \leq r(A,B)\leq r(A)+r(B) max(r(A),r(B))r(A,B)r(A)+r(B)
A 可逆 : r ( A B ) = r ( B A ) = r ( B ) A可逆:r(AB)=r(BA)=r(B) A可逆:r(AB)=r(BA)=r(B)
A : m ∗ n , B : n ∗ s , A B = O ⇒ r ( A ) + r ( B ) ≤ n A:m*n,B:{n*s},AB=O \Rightarrow r(A)+r(B) \leq n A:mn,B:ns,AB=Or(A)+r(B)n
r ( [ A O O B ] ) = r ( A ) + r ( B ) \displaystyle r(\left[ \begin{matrix} A & O \\ O & B \\ \end{matrix} \right])= r(A)+r(B) r([AOOB])=r(A)+r(B)

A 是 n 阶矩阵伴随矩阵 A ∗ 的秩 A是n阶矩阵伴随矩阵A^*的秩 An阶矩阵伴随矩阵A的秩

  • R ( A ) = n ⇒ R ( A ∗ ) = n R(A)=n \Rightarrow R(A^*)=n R(A)=nR(A)=n
  • R ( A ) = n − 1 ⇒ R ( A ∗ ) = 1 R(A)=n-1 \Rightarrow R(A^*)=1 R(A)=n1R(A)=1
  • R ( A ) < n − 1 ⇒ R ( A ∗ ) = 0 R(A)<n-1 \Rightarrow R(A^*)=0 R(A)<n1R(A)=0

正交规范化

内积

( a ⃗ , b ⃗ ) = a ⃗ T b ⃗ = a ⃗ b ⃗ T = ∑ i = 1 n a i b i (\vec{a},\vec{b})=\vec{a}^T\vec{b}=\vec{a}\vec{b}^T=\displaystyle \sum^n_{i=1} a_ib_i (a ,b )=a Tb =a b T=i=1naibi

施密特正交化

b 1 ⃗ = a 1 ⃗ \vec{b_1}=\vec{a_1} b1 =a1
b 2 ⃗ = a 2 ⃗ − ( a 2 ⃗ , b 1 ⃗ ) ( b 1 ⃗ , b 1 ⃗ ) b 1 ⃗ \vec{b_2}=\vec{a_2}-\cfrac{(\vec{a_2},\vec{b_1})}{(\vec{b_1},\vec{b_1})}\vec{b_1} b2 =a2 (b1 ,b1 )(a2 ,b1 )b1
b 3 ⃗ = a 3 ⃗ − ( a 3 ⃗ , b 1 ⃗ ) ( b 1 ⃗ , b 1 ⃗ ) b 1 ⃗ − ( a 3 ⃗ , b 2 ⃗ ) ( b 2 ⃗ , b 2 ⃗ ) b 2 ⃗ \vec{b_3}=\vec{a_3}-\cfrac{(\vec{a_3},\vec{b_1})}{(\vec{b_1},\vec{b_1})}\vec{b_1}-\cfrac{(\vec{a_3},\vec{b_2})}{(\vec{b_2},\vec{b_2})}\vec{b_2} b3 =a3 (b1 ,b1 )(a3 ,b1 )b1 (b2 ,b2 )(a3 ,b2 )b2

第四章 线性方程组

齐次线性方程组

方程组 { a 11 x 1 + a 12 x 2 + . . . + a 1 n x n = 0 a 21 x 1 + a 22 x 2 + . . . + a 2 n x n = 0 ⋮ a m 1 x 1 + a m 2 x 2 + . . . + a m n x n = 0 方程组\left\{\begin{aligned} a_{11}x_1+a_{12}x_2+...+a_{1n}x_n=0\\ a_{21}x_1+a_{22}x_2+...+a_{2n}x_n=0\\ \vdots\\ a_{m1}x_1+a_{m2}x_2+...+a_{mn}x_n=0\\ \end{aligned}\right. 方程组 a11x1+a12x2+...+a1nxn=0a21x1+a22x2+...+a2nxn=0am1x1+am2x2+...+amnxn=0
如果 r ( A ) = r < n r(A)=r<n r(A)=r<n,则有 n − r n-r nr个线性无关的解,即基础解系由这 n − r n-r nr个解向量构成

非齐次线性方程组

A x ⃗ = b ⃗ A\vec{x}=\vec{b} Ax =b
有解 ⇒ r ( A ) = r ( [ A , b ⃗ ] ) \Rightarrow r(A)=r([A,\vec{b}]) r(A)=r([A,b ])

第五章 特征值和特征向量

定义

A a ⃗ = λ a ⃗ & & a ⃗ ≠ 0 ⃗ A \vec{a}=\lambda \vec{a} \&\& \vec{a}\neq \vec{0} Aa =λa &&a =0 ,则 λ \lambda λ特征值 a ⃗ \vec{a} a 特征向量

解法

λ \lambda λ
移项可得 ( λ E − A ) a ⃗ = 0 ⃗ (\lambda E-A)\vec{a}=\vec{0} (λEA)a =0
则可得特征方程 ( λ E − A ) = 0 (\lambda E-A)=0 (λEA)=0

A A A
组合可得 A ( a ⃗ 1 , a ⃗ 2 , . . . , a ⃗ n ) = ( λ 1 a ⃗ 1 , λ 2 a ⃗ 2 , . . . , λ n a ⃗ n ) A (\vec{a}_1,\vec{a}_2,...,\vec{a}_n)=(\lambda_1 \vec{a}_1,\lambda_2 \vec{a}_2,...,\lambda_n\vec{a}_n) A(a 1,a 2,...,a n)=(λ1a 1,λ2a 2,...,λna n)
则可得 A = ( λ 1 a ⃗ 1 , λ 2 a ⃗ 2 , . . . , λ n a ⃗ n ) ∗ ( a ⃗ 1 , a ⃗ 2 , . . . , a ⃗ n ) − 1 A =(\lambda_1 \vec{a}_1,\lambda_2 \vec{a}_2,...,\lambda_n\vec{a}_n) *(\vec{a}_1,\vec{a}_2,...,\vec{a}_n)^{-1} A=(λ1a 1,λ2a 2,...,λna n)(a 1,a 2,...,a n)1

性质

  • ∑ λ i = ∑ a i i \displaystyle\sum \lambda_i=\sum a_{ii} λi=aii
  • ∣ A ∣ = ∏ λ i |A|=\prod \lambda_i A=λi
  • A 的特征值为 ( λ 1 , λ 2 , . . . , λ n ) , 特征向量为 ( a ⃗ 1 , a ⃗ 2 , . . . , a ⃗ n ) A的特征值为(\lambda_1,\lambda_2,...,\lambda_n),特征向量为(\vec{a}_1,\vec{a}_2,...,\vec{a}_n) A的特征值为(λ1,λ2,...,λn),特征向量为(a 1,a 2,...,a n)
    A − 1 的特征值为 ( 1 λ 1 , 1 λ 3 , . . . , 1 λ n ) , 特征向量为 ( a ⃗ 1 , a ⃗ 2 , . . . , a ⃗ n ) A^{-1}的特征值为(\cfrac{1}{\lambda_1},\cfrac{1}{\lambda_3},...,\cfrac{1}{\lambda_n}),特征向量为(\vec{a}_1,\vec{a}_2,...,\vec{a}_n) A1的特征值为(λ11,λ31,...,λn1),特征向量为(a 1,a 2,...,a n)

相似矩阵

定义

P A P − 1 = P − 1 A P = B PAP^{-1}=P^{-1}AP=B PAP1=P1AP=B A ∼ B A \sim B AB
A ∼ Λ A \sim \Lambda AΛ, Λ \Lambda Λ是对角阵,则 A A A可相似对角化 Λ \Lambda Λ A A A相似标准型

A ∼ B ⇒ { 特征多项式相同,即 ∣ λ E − A ∣ = ∣ λ E − B ∣ 特征值相同 r ( A ) = r ( B ) ∣ A ∣ = ∣ B ∣ = ∏ λ i ∑ a i i = ∑ b i i = ∑ λ i A \sim B \Rightarrow \left\{\begin{aligned} &特征多项式相同,即|\lambda E-A|=|\lambda E-B|\\ &特征值相同\\ &r(A)=r(B)\\ &|A|=|B|=\prod \lambda_i\\ &\sum a_{ii}=\sum b_{ii}=\sum\lambda_i\\ \end{aligned}\right. AB 特征多项式相同,即λEA=λEB特征值相同r(A)=r(B)A=B=λiaii=bii=λi

可对角化和可相似对角化

n n n阶方阵 ∣ A ∣ |A| A可对角化充分必要条件是 A A A n n n个线性无关的特征向量

n n n阶方阵 ∣ A ∣ |A| A可相似对角化充分必要条件是 A A A的每个特征值中,线性无关的特征向量的个数恰好等于该特征值的重数

解法

P − 1 A P = Λ P^{-1}AP=\Lambda P1AP=Λ,求解 P P P
P − 1 A P = Λ ⇒ A P = P Λ P^{-1}AP=\Lambda \Rightarrow AP=P\Lambda P1AP=ΛAP=PΛ
A a ⃗ = a ⃗ ∗ λ A \vec{a}=\vec{a} *\lambda Aa =a λ可知, P P P由特征向量构成

  • 先求出矩阵 A A A的特征值 λ 1 , λ 2 , . . . , λ n \lambda_1,\lambda_2,...,\lambda_n λ1,λ2,...,λn
  • 根据特征值求出特征向量 a ⃗ 1 , a ⃗ 2 , . . . , a ⃗ n \vec{a}_1,\vec{a}_2,...,\vec{a}_n a 1,a 2,...,a n
  • P = ( a ⃗ 1 , a ⃗ 2 , . . . , a ⃗ n ) , P − 1 A P = Λ = [ λ 1 λ 2 ⋱ λ n ] P=(\vec{a}_1,\vec{a}_2,...,\vec{a}_n),P^{-1}AP=\Lambda=\left[ \begin{matrix} \lambda_1&& \\ & \lambda_2&& \\ & &\ddots& \\ & &&\lambda_n \\ \end{matrix} \right] P=(a 1,a 2,...,a n),P1AP=Λ= λ1λ2λn

实对称矩阵

定义

A A A n n n阶实对称矩阵,则有正交矩阵使得 Q − 1 A Q = Q T A Q = Λ Q^{-1}AQ=Q^TAQ=\Lambda Q1AQ=QTAQ=Λ

性质

实对称矩阵必可相似对角化
实对称矩阵的属于不同特征值对应的特征向量相互正交

解法

根据实对称矩阵用正交矩阵相似对角化

  • 求出矩阵 A A A的特征值 λ 1 , λ 2 , . . . , λ n \lambda_1,\lambda_2,...,\lambda_n λ1,λ2,...,λn
  • 根据特征值求出特征向量 a ⃗ 1 , a ⃗ 2 , . . . , a ⃗ n \vec{a}_1,\vec{a}_2,...,\vec{a}_n a 1,a 2,...,a n
  • 改造特征向量
    • 特征值不同则已正交
    • 特征值相同则序判断特征向量是否正交
      • 不正交则需正交化处理
  • Q = ( γ 1 , γ 2 , . . . , γ n ) , Q − 1 A Q = Λ = [ λ 1 λ 2 ⋱ λ n ] Q=(\gamma_1,\gamma_2,...,\gamma_n), Q^{-1}AQ=\Lambda=\left[ \begin{matrix} \lambda_1&& \\ & \lambda_2&& \\ & &\ddots& \\ & &&\lambda_n \\ \end{matrix} \right] Q=(γ1,γ2,...,γn),Q1AQ=Λ= λ1λ2λn

第六章 二次型

标准型

f ( x 1 , x 2 , … , x n ) = a 1 x 1 2 + a 2 x 2 2 + ⋯ + a n x n 2 f(x_1,x_2,\dots,x_n)=a_1x_1^2+a_2x_2^2+\dots+a_nx_n^2 f(x1,x2,,xn)=a1x12+a2x22++anxn2

规范型和正负惯性指数

f ( x 1 , x 2 , … , x n ) = x 1 2 + x 2 2 + ⋯ + a p x n 2 − x p + 1 2 − ⋯ − x p + q 2 f(x_1,x_2,\dots,x_n)=x_1^2+x_2^2+\dots+a_px_n^2-x_{p+1}^2-\dots-x_{p+q}^2 f(x1,x2,,xn)=x12+x22++apxn2xp+12xp+q2

  • 正惯性指数: p p p
  • 负惯性指数: q q q

合同

C T A C = B , C 可逆 ⇔ A ≃ B C^TAC=B ,C可逆\Leftrightarrow A \simeq B CTAC=B,C可逆AB

易错点

kA

  • A是行列式
    k ∣ a 11 a 12 . . . a 1 n a 21 a 22 . . . a 2 n . . . . a n 1 a n 2 . . . a n n ] = [ k a 11 k a 12 . . . k a 1 n a 21 a 22 . . . a 2 n . . . . a n 1 a n 2 . . . a n n ∣ k\left |\begin{matrix} a_{11} & a_{12} & ... & a_{1n}\\ a_{21} & a_{22} & ... & a_{2n}\\ ....\\ a_{n1} & a_{n2} & ... & a_{nn}\\ \end{matrix}\right] = \left [\begin{matrix} ka_{11} & ka_{12} & ... & ka_{1n}\\ a_{21} & a_{22} & ... & a_{2n}\\ ....\\ a_{n1} & a_{n2} & ... & a_{nn}\\ \end{matrix}\right| k a11a21....an1a12a22an2.........a1na2nann = ka11a21....an1ka12a22an2.........ka1na2nann

  • A是矩阵
    k [ a 11 a 12 . . . a 1 n a 21 a 22 . . . a 2 n . . . . a n 1 a n 2 . . . a n n ] = [ k a 11 k a 12 . . . k a 1 n k a 21 k a 22 . . . k a 2 n . . . . k a n 1 k a n 2 . . . k a n n ] k\left [\begin{matrix} a_{11} & a_{12} & ... & a_{1n}\\ a_{21} & a_{22} & ... & a_{2n}\\ ....\\ a_{n1} & a_{n2} & ... & a_{nn}\\ \end{matrix}\right] = \left [\begin{matrix} ka_{11} & ka_{12} & ... & ka_{1n}\\ ka_{21} & ka_{22} & ... & ka_{2n}\\ ....\\ ka_{n1} & ka_{n2} & ... & ka_{nn}\\ \end{matrix}\right] k a11a21....an1a12a22an2.........a1na2nann = ka11ka21....kan1ka12ka22kan2.........ka1nka2nkann

等价,相似,合同

  • 等价
    若矩阵A经过有限次的初等变换变到矩阵B,则称A与B等价 ⇒ r ( A ) = r ( B ) \Rightarrow r(A)=r(B) r(A)=r(B)

  • 相似
    P A P − 1 = P − 1 A P = B PAP^{-1}=P^{-1}AP=B PAP1=P1AP=B

  • 合同
    C T A C = B C^{T}AC=B CTAC=B

相似 ⇒ \Rightarrow 等价
合同 ⇒ \Rightarrow 等价
等价 ⇒ \Rightarrow 等秩
相似和合同无充要关系
对称阵的情况下,相似一定合同
判定合同:正负惯性指数完全相同 ⇔ \Leftrightarrow 合同与否

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值