从表中可以发现,针对一个概率分布类型 AnyLogic 通常不止提供一个概率分布函数,不带参数的形式提前预设了默认的参数值,带参数的形式允许用户自定义参数值。以正态分布函数为例:
■normal()--均值为0,方差为1
■normal(sigma)--均值为0,方差sigma自定义
■ normal(sigma,mean)--均值mean和方差sigma均自定义
■normal(min,max,shift,stretch)--函数返回最小值min、函数返回最大值max、均值shift和方差stretch均自定义
如果你观测到了仿真对象系统某个参数的一组数据,并且这组数据能很好地代表该参数的随机特性,可以通过对观测数据集进行分布拟合,并用拟合最佳的标准概率分布来设置参数值。
分布拟合是找到一个与数据集最符合的标准概率分布的过程,这个标准概率分布产生随机数序列与观测是数据集越接近越好。市场上有很多商用分布拟合软件,它们会对数据集进行全面统计,进行各种拟合检测(如柯尔莫哥洛夫-斯米尔诺夫测试等),并根据拟合优度的多次测试综合给出符合度排名。建议选择使用支持AnyLogic 概率分布函数的分布拟合软件,这类软件的拟合结果可以直接复制到 AnyLogic 模型中。
06-02
5526
