机器学习实战:支持向量机

机器学习实战

1、支持向量机 概述

支持向量机(Support Vector Machines, SVM):是一种监督学习算法。

  • 支持向量(Support Vector)就是离分隔超平面最近的那些点。
  • 机(Machine)就是表示一种算法,而不是表示机器。

2、支持向量机 场景

  • 要给左右两边的点进行分类
  • 明显发现:选择D会比B、C分隔的效果要好很多。

在这里插入图片描述

3、支持向量机 原理

工作原理

参考博客:

支持向量机数学证明与推导(SVM)

拉格朗日对偶问题(Lagrange duality)

对偶问题

开发流程

收集数据:可以使用任意方法。
准备数据:需要数值型数据。
分析数据:有助于可视化分隔超平面。
训练算法:SVM的大部分时间都源自训练,该过程主要实现两个参数的调优。
测试算法:十分简单的计算过程就可以实现。
使用算法:几乎所有分类问题都可以使用SVM,值得一提的是,SVM本身是一个二类分类器,对多类问题应用SVM需要对代码做一些修改。

算法特点

  • 优点:泛化(由具体的、个别的扩大为一般的,就是说:模型训练完后的新样本)错误率低,计算开销不大,结果易理解。
  • 缺点:对参数调节和核函数的选择敏感,原始分类器不加修改仅适合于处理二分类问题。
  • 使用数据类型:数值型和标称型数据。

4、朴素贝叶斯 项目案例

完整代码:https://blog.csdn.net/qq_45556599/article/details/103411915

项目案例1: 应用简化版 SMO算法处理小规模数据集(无核函数)

项目概述
对小规模数据点进行分类

开发流程

收集数据

文本文件格式:

3.542485	1.977398	-1
3.018896	2.556416	-1
7.551510	-1.580030	1
2.114999	-0.004466	-1
8.127113	1.274372	1

准备数据

def loadDataSet(fileName):
    """
    对文件进行逐行解析,从而得到第行的类标签和整个数据矩阵
    Args:
        fileName 文件名
    Returns:
        dataMat  数据矩阵
        labelMat 类标签
    """
    dataMat = []
    labelMat = []
    fr = open(fileName)
    for line in fr.readlines():
        lineArr = line.strip().split('\t')
        dataMat.append([float(lineArr[0]), float(lineArr[1])])
        labelMat.append(float(lineArr[2]))
    return dataMat, labelMat


def selectJrand(i, m):
    """
    随机选择一个整数
    Args:
        i  第一个alpha的下标
        m  所有alpha的数目
    Returns:
        j  返回一个不为i的随机数,在0~m之间的整数值
    """
    j = i
    while j == i:
        j = int(random.uniform(0, m))
    return j


def clipAlpha(aj, H, L):
    """clipAlpha(调整aj的值,使aj处于 L<=aj<=H)
    Args:
        aj  目标值
        H   最大值
        L   最小值
    Returns:
        aj  目标值
    """
    if aj > H:
        aj = H
    if L > aj:
        aj = L
    return aj

在这里插入图片描述
分析数据:无

训练算法

def smoSimple(dataMatIn, classLabels, C, toler, maxIter):
    """smoSimple
    Args:
        dataMatIn    数据集
        classLabels  类别标签
        C   松弛变量(常量值),允许有些数据点可以处于分隔面的错误一侧。
            控制最大化间隔和保证大部分的函数间隔小于1.0这两个目标的权重。
            可以通过调节该参数达到不同的结果。
        toler   容错率(是指在某个体系中能减小一些因素或选择对某个系统产生不稳定的概率。)
        maxIter 退出前最大的循环次数
    Returns:
        b       模型的常量值
        alphas  拉格朗日乘子
    """
    dataMatrix = mat(dataMatIn)
    # 矩阵转置 和 .T 一样的功能
    labelMat = mat(classLabels).transpose()
    m, n = shape(dataMatrix)

    # 初始化 b和alphas(alpha有点类似权重值。)
    b = 0
    alphas = mat(zeros((m, 1)))

    # 没有任何alpha改变的情况下遍历数据的次数
    iter = 0
    while (iter < maxIter):
        # w = calcWs(alphas, dataMatIn, classLabels)
        # print("w:", w)

        # 记录alpha是否已经进行优化,每次循环时设为0,然后再对整个集合顺序遍历
        alphaPairsChanged = 0
        for i in range(m):
            # print 'alphas=', alphas
            # print 'labelMat=', labelMat
            # print 'multiply(alphas, labelMat)=', multiply(alphas, labelMat)
            # 我们预测的类别 y = w^Tx[i]+b; 其中因为 w = Σ(1~n) a[n]*label[n]*x[n]
            fXi = float(multiply(alphas, labelMat).T * (dataMatrix * dataMatrix[i, :].T)) + b
            # 预测结果与真实结果比对,计算误差Ei
            Ei = fXi - float(labelMat[i])

            # 约束条件 (KKT条件是解决最优化问题的时用到的一种方法。我们这里提到的最优化问题通常是指对于给定的某一函数,求其在指定作用域上的全局最小值)
            # 0<=alphas[i]<=C,但由于0和C是边界值,我们无法进行优化,因为需要增加一个alphas和降低一个alphas。
            # 表示发生错误的概率:labelMat[i]*Ei 如果超出了 toler, 才需要优化。至于正负号,我们考虑绝对值就对了。
            '''
            # 检验训练样本(xi, yi)是否满足KKT条件
            yi*f(i) >= 1 and alpha = 0 (outside the boundary)
            yi*f(i) == 1 and 0<alpha< C (on the boundary)
            yi*f(i) <= 1 and alpha = C (between the boundary)
            '''
            if ((labelMat[i] * Ei < -toler) and (alphas[i] < C)) or ((labelMat[i] * Ei > toler) and (alphas[i] > 0)):

                # 如果满足优化的条件,我们就随机选取非i的一个点,进行优化比较
                j = selectJrand(i, m)
                # 预测j的结果
                fXj = float(multiply(alphas, labelMat).T * (dataMatrix * dataMatrix[j, :].T)) + b
                Ej = fXj - float(labelMat[j])
                alphaIold = alphas[i].copy()
                alphaJold = alphas[j].copy()

                # L和H用于将alphas[j]调整到0-C之间。如果L==H,就不做任何改变,直接执行continue语句
                # labelMat[i] != labelMat[j] 表示异侧,就相减,否则是同侧,就相加。
                if labelMat[i] != labelMat[j]:
                    L = max(0, alphas[j] - alphas[i])
                    H = min(C, C + alphas[j] - alphas[i])
                else:
                    L = max(0, alphas[j] + alphas[i] - C)
                    H = min(C, alphas[j] + alphas[i])
                # 如果相同,就没发优化了
                if L == H:
                    print("L==H")
                    continue

                # eta是alphas[j]的最优修改量,如果eta==0,需要退出for循环的当前迭代过程
                # 参考《统计学习方法》李航-P125~P128<序列最小最优化算法>
                eta = 2.0 * dataMatrix[i, :] * dataMatrix[j, :].T - dataMatrix[i, :] * dataMatrix[i, :].T - dataMatrix[
                                                                                            j, :] * dataMatrix[j, :].T

                if eta >= 0:
                    print("eta>=0")
                    continue

                # 计算出一个新的alphas[j]值
                alphas[j] -= labelMat[j] * (Ei - Ej) / eta
                # 并使用辅助函数,以及L和H对其进行调整
                alphas[j] = clipAlpha(alphas[j], H, L)
                # 检查alpha[j]是否只是轻微的改变,如果是的话,就退出for循环。
                if abs(alphas[j] - alphaJold) < 0.00001:
                    print("j not moving enough")
                    continue
                # 然后alphas[i]和alphas[j]同样进行改变,虽然改变的大小一样,但是改变的方向正好相反
                alphas[i] += labelMat[j] * labelMat[i] * (alphaJold - alphas[j])
                # 在对alpha[i], alpha[j] 进行优化之后,给这两个alpha值设置一个常数b。
                # w= Σ[1~n] ai*yi*xi => b = yj- Σ[1~n] ai*yi(xi*xj)
                # 所以:  b1 - b = (y1-y) - Σ[1~n] yi*(a1-a)*(xi*x1)
                # 为什么减2遍? 因为是 减去Σ[1~n],正好2个变量i和j,所以减2遍
                b1 = b - Ei - labelMat[i] * (alphas[i] - alphaIold) * dataMatrix[i, :] * dataMatrix[i, :].T - labelMat[
                    j] * (alphas[j] - alphaJold) * dataMatrix[i, :] * dataMatrix[j, :].T
                b2 = b - Ej - labelMat[i] * (alphas[i] - alphaIold) * dataMatrix[i, :] * dataMatrix[j, :].T - labelMat[
                    j] * (alphas[j] - alphaJold) * dataMatrix[j, :] * dataMatrix[j, :].T
                if (0 < alphas[i]) and (C > alphas[i]):
                    b = b1
                elif (0 < alphas[j]) and (C > alphas[j]):
                    b = b2
                else:
                    b = (b1 + b2) / 2.0
                alphaPairsChanged += 1
                print("iter: %d i:%d, pairs changed %d" % (iter, i, alphaPairsChanged))
        # 在for循环外,检查alpha值是否做了更新,如果在更新则将iter设为0后继续运行程序
        # 知道更新完毕后,iter次循环无变化,才推出循环。
        if alphaPairsChanged == 0:
            iter += 1
        else:
            iter = 0
        print("iteration number: %d" % iter)
    return b, alphas

在这里插入图片描述

项目案例2: 利用完整 Platt SMO算法加速优化

完整版Platt SMO的支持函数

class optStruct:
    """
    建立的数据结构来保存所有的重要值
    """
    def __init__(self, dataMatIn, classLabels, C, toler, kTup):
        """
        Args:
            dataMatIn    数据集
            classLabels  类别标签
            C   松弛变量(常量值),允许有些数据点可以处于分隔面的错误一侧。
                控制最大化间隔和保证大部分的函数间隔小于1.0这两个目标的权重。
                可以通过调节该参数达到不同的结果。
            toler   容错率
            kTup    包含核函数信息的元组
        """

        self.X = dataMatIn
        self.labelMat = classLabels
        self.C = C
        self.tol = toler

        # 数据的行数
        self.m = shape(dataMatIn)[0]
        self.alphas = mat(zeros((self.m, 1)))
        self.b = 0

        # 误差缓存,第一列给出的是eCache是否有效的标志位,第二列给出的是实际的E值。
        self.eCache = mat(zeros((self.m, 2)))

        # m行m列的矩阵
        self.K = mat(zeros((self.m, self.m)))
        for i in range(self.m):
            self.K[:, i] = kernelTrans(self.X, self.X[i, :], kTup)


def calcEk(oS, k):
    """calcEk(求 Ek误差:预测值-真实值的差)
    该过程在完整版的SMO算法中陪出现次数较多,因此将其单独作为一个方法
    Args:
        oS  optStruct对象
        k   具体的某一行
    Returns:
        Ek  预测结果与真实结果比对,计算误差Ek
    """
    fXk = float(multiply(oS.alphas, oS.labelMat).T * oS.K[:, k] + oS.b)
    Ek = fXk - float(oS.labelMat[k])
    return Ek


def selectJrand(i, m):
    """
    随机选择一个整数
    Args:
        i  第一个alpha的下标
        m  所有alpha的数目
    Returns:
        j  返回一个不为i的随机数,在0~m之间的整数值
    """
    j = i
    while j == i:
        j = int(random.uniform(0, m))
    return j


def selectJ(i, oS, Ei):  # this is the second choice -heurstic, and calcs Ej
    """selectJ(返回最优的j和Ej)
    内循环的启发式方法。
    选择第二个(内循环)alpha的alpha值
    这里的目标是选择合适的第二个alpha值以保证每次优化中采用最大步长。
    该函数的误差与第一个alpha值Ei和下标i有关。
    Args:
        i   具体的第i一行
        oS  optStruct对象
        Ei  预测结果与真实结果比对,计算误差Ei
    Returns:
        j  随机选出的第j一行
        Ej 预测结果与真实结果比对,计算误差Ej
    """
    maxK = -1
    maxDeltaE = 0
    Ej = 0
    # 首先将输入值Ei在缓存中设置成为有效的。这里的有效意味着它已经计算好了。
    oS.eCache[i] = [1, Ei]

    # print 'oS.eCache[%s]=%s' % (i, oS.eCache[i])
    # print 'oS.eCache[:, 0].A=%s' % oS.eCache[:, 0].A.T
    # """
    # # 返回非0的:行列值
    # nonzero(oS.eCache[:, 0].A)= (
    #     行: array([ 0,  2,  4,  5,  8, 10, 17, 18, 20, 21, 23, 25, 26, 29, 30, 39, 46,52, 54, 55, 62, 69, 70, 76, 79, 82, 94, 97]),
    #     列: array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,0, 0, 0, 0, 0])
    # )
    # """
    # print 'nonzero(oS.eCache[:, 0].A)=', nonzero(oS.eCache[:, 0].A)
    # # 取行的list
    # print 'nonzero(oS.eCache[:, 0].A)[0]=', nonzero(oS.eCache[:, 0].A)[0]
    # 非零E值的行的list列表,所对应的alpha值
    validEcacheList = nonzero(oS.eCache[:, 0].A)[0]
    if (len(validEcacheList)) > 1:
        for k in validEcacheList:  # 在所有的值上进行循环,并选择其中使得改变最大的那个值
            if k == i:
                continue  # don't calc for i, waste of time

            # 求 Ek误差:预测值-真实值的差
            Ek = calcEk(oS, k)
            deltaE = abs(Ei - Ek)
            if deltaE > maxDeltaE:
                # 选择具有最大步长的j
                maxK = k
                maxDeltaE = deltaE
                Ej = Ek
        return maxK, Ej
    else:  # 如果是第一次循环,则随机选择一个alpha值
        j = selectJrand(i, oS.m)

        # 求 Ek误差:预测值-真实值的差
        Ej = calcEk(oS, j)
    return j, Ej


def updateEk(oS, k):
    """updateEk(计算误差值并存入缓存中。)
    在对alpha值进行优化之后会用到这个值。
    Args:
        oS  optStruct对象
        k   某一列的行号
    """

    # 求 误差:预测值-真实值的差
    Ek = calcEk(oS, k)
    oS.eCache[k] = [1, Ek]

完整Platt SMO算法中的优化例程

def innerL(i, oS):
    """innerL
    内循环代码
    Args:
        i   具体的某一行
        oS  optStruct对象
    Returns:
        0   找不到最优的值
        1   找到了最优的值,并且oS.Cache到缓存中
    """

    # 求 Ek误差:预测值-真实值的差
    Ei = calcEk(oS, i)

    # 约束条件 (KKT条件是解决最优化问题的时用到的一种方法。我们这里提到的最优化问题通常是指对于给定的某一函数,求其在指定作用域上的全局最小值)
    # 0<=alphas[i]<=C,但由于0和C是边界值,我们无法进行优化,因为需要增加一个alphas和降低一个alphas。
    # 表示发生错误的概率:labelMat[i]*Ei 如果超出了 toler, 才需要优化。至于正负号,我们考虑绝对值就对了。
    '''
    # 检验训练样本(xi, yi)是否满足KKT条件
    yi*f(i) >= 1 and alpha = 0 (outside the boundary)
    yi*f(i) == 1 and 0<alpha< C (on the boundary)
    yi*f(i) <= 1 and alpha = C (between the boundary)
    '''
    if ((oS.labelMat[i] * Ei < -oS.tol) and (oS.alphas[i] < oS.C)) or ((oS.labelMat[i] * Ei > oS.tol) and (oS.alphas[i]
                                                                                                           > 0)):
        # 选择最大的误差对应的j进行优化。效果更明显
        j, Ej = selectJ(i, oS, Ei)
        alphaIold = oS.alphas[i].copy()
        alphaJold = oS.alphas[j].copy()

        # L和H用于将alphas[j]调整到0-C之间。如果L==H,就不做任何改变,直接return 0
        if oS.labelMat[i] != oS.labelMat[j]:
            L = max(0, oS.alphas[j] - oS.alphas[i])
            H = min(oS.C, oS.C + oS.alphas[j] - oS.alphas[i])
        else:
            L = max(0, oS.alphas[j] + oS.alphas[i] - oS.C)
            H = min(oS.C, oS.alphas[j] + oS.alphas[i])
        if L == H:
            # print("L==H")
            return 0

        # eta是alphas[j]的最优修改量,如果eta==0,需要退出for循环的当前迭代过程
        # 参考《统计学习方法》李航-P125~P128<序列最小最优化算法>
        eta = 2.0 * oS.K[i, j] - oS.K[i, i] - oS.K[j, j]  # changed for kernel
        if eta >= 0:
            print("eta>=0")
            return 0

        # 计算出一个新的alphas[j]值
        oS.alphas[j] -= oS.labelMat[j] * (Ei - Ej) / eta
        # 并使用辅助函数,以及L和H对其进行调整
        oS.alphas[j] = clipAlpha(oS.alphas[j], H, L)
        # 更新误差缓存
        updateEk(oS, j)

        # 检查alpha[j]是否只是轻微的改变,如果是的话,就退出for循环。
        if abs(oS.alphas[j] - alphaJold) < 0.00001:
            # print("j not moving enough")
            return 0

        # 然后alphas[i]和alphas[j]同样进行改变,虽然改变的大小一样,但是改变的方向正好相反
        oS.alphas[i] += oS.labelMat[j] * oS.labelMat[i] * (alphaJold - oS.alphas[j])
        # 更新误差缓存
        updateEk(oS, i)

        # 在对alpha[i], alpha[j] 进行优化之后,给这两个alpha值设置一个常数b。
        # w= Σ[1~n] ai*yi*xi => b = yi- Σ[1~n] ai*yi(xi*xj)
        # 所以:  b1 - b = (y1-y) - Σ[1~n] yi*(a1-a)*(xi*x1)
        # 为什么减2遍? 因为是 减去Σ[1~n],正好2个变量i和j,所以减2遍
        b1 = oS.b - Ei - oS.labelMat[i] * (oS.alphas[i] - alphaIold) * oS.K[i, i] - oS.labelMat[j] * (oS.alphas[j] -
                                                                                                      alphaJold) * oS.K[
            i, j]
        b2 = oS.b - Ej - oS.labelMat[i] * (oS.alphas[i] - alphaIold) * oS.K[i, j] - oS.labelMat[j] * (oS.alphas[j] -
                                                                                                      alphaJold) * oS.K[
            j, j]
        if (0 < oS.alphas[i]) and (oS.C > oS.alphas[i]):
            oS.b = b1
        elif (0 < oS.alphas[j]) and (oS.C > oS.alphas[j]):
            oS.b = b2
        else:
            oS.b = (b1 + b2) / 2.0
        return 1
    else:
        return 0

完整版Platt SMO的外循环代码

def smoP(dataMatIn, classLabels, C, toler, maxIter, kTup=('lin', 0)):
    """
    完整SMO算法外循环,与smoSimple有些类似,但这里的循环退出条件更多一些
    Args:
        dataMatIn    数据集
        classLabels  类别标签
        C   松弛变量(常量值),允许有些数据点可以处于分隔面的错误一侧。
            控制最大化间隔和保证大部分的函数间隔小于1.0这两个目标的权重。
            可以通过调节该参数达到不同的结果。
        toler   容错率
        maxIter 退出前最大的循环次数
        kTup    包含核函数信息的元组
    Returns:
        b       模型的常量值
        alphas  拉格朗日乘子
    """

    # 创建一个 optStruct 对象
    oS = optStruct(mat(dataMatIn), mat(classLabels).transpose(), C, toler, kTup)
    iter = 0
    entireSet = True
    alphaPairsChanged = 0

    # 循环遍历:循环maxIter次 并且 (alphaPairsChanged存在可以改变 or 所有行遍历一遍)
    while (iter < maxIter) and ((alphaPairsChanged > 0) or entireSet):
        alphaPairsChanged = 0

        #  当entireSet=true or 非边界alpha对没有了;就开始寻找 alpha对,然后决定是否要进行else。
        if entireSet:
            # 在数据集上遍历所有可能的alpha
            for i in range(oS.m):
                # 是否存在alpha对,存在就+1
                alphaPairsChanged += innerL(i, oS)
                # print("fullSet, iter: %d i:%d, pairs changed %d" % (iter, i, alphaPairsChanged))
            iter += 1

        # 对已存在 alpha对,选出非边界的alpha值,进行优化。
        else:
            # 遍历所有的非边界alpha值,也就是不在边界0或C上的值。
            nonBoundIs = nonzero((oS.alphas.A > 0) * (oS.alphas.A < C))[0]
            for i in nonBoundIs:
                alphaPairsChanged += innerL(i, oS)
                # print("non-bound, iter: %d i:%d, pairs changed %d" % (iter, i, alphaPairsChanged))
            iter += 1

        # 如果找到alpha对,就优化非边界alpha值,否则,就重新进行寻找,如果寻找一遍 遍历所有的行还是没找到,就退出循环。
        if entireSet:
            entireSet = False  # toggle entire set loop
        elif alphaPairsChanged == 0:
            entireSet = True
        print("iteration number: %d" % iter)
    return oS.b, oS.alphas
    
    
def calcWs(alphas, dataArr, classLabels):
    """
    基于alpha计算w值
    Args:
        alphas        拉格朗日乘子
        dataArr       feature数据集
        classLabels   目标变量数据集
    Returns:
        wc  回归系数
    """
    X = mat(dataArr)
    labelMat = mat(classLabels).transpose()
    m, n = shape(X)
    w = zeros((n, 1))
    for i in range(m):
        w += multiply(alphas[i] * labelMat[i], X[i, :].T)
    return w

在这里插入图片描述
在这里插入图片描述
核转换函数

def kernelTrans(X, A, kTup):  # calc the kernel or transform data to a higher dimensional space
    """
    核转换函数
    Args:
        X     dataMatIn数据集
        A     dataMatIn数据集的第i行的数据
        kTup  核函数的信息
    Returns:
    """
    m, n = shape(X)
    K = mat(zeros((m, 1)))
    if kTup[0] == 'lin':
        # linear kernel:   m*n * n*1 = m*1
        K = X * A.T
    elif kTup[0] == 'rbf':
        for j in range(m):
            deltaRow = X[j, :] - A
            K[j] = deltaRow * deltaRow.T
        # 径向基函数的高斯版本
        K = exp(K / (-1 * kTup[1] ** 2))  # divide in NumPy is element-wise not matrix like Matlab
    else:
        raise NameError('Houston We Have a Problem -- That Kernel is not recognized')
    return K

利用核函数进行分类的径向基测试函数

def testRbf(k1=1.3):
    dataArr, labelArr = loadDataSet('data/testSetRBF.txt')
    b, alphas = smoP(dataArr, labelArr, 200, 0.0001, 10000, ('rbf', k1))  # C=200 important
    datMat = mat(dataArr)
    labelMat = mat(labelArr).transpose()
    svInd = nonzero(alphas.A > 0)[0]
    sVs = datMat[svInd]  # get matrix of only support vectors
    labelSV = labelMat[svInd]
    print("there are %d Support Vectors" % shape(sVs)[0])
    m, n = shape(datMat)
    errorCount = 0
    for i in range(m):
        kernelEval = kernelTrans(sVs, datMat[i, :], ('rbf', k1))

        # 和这个svm-simple类似: fXi = float(multiply(alphas, labelMat).T*(dataMatrix*dataMatrix[i, :].T)) + b
        predict = kernelEval.T * multiply(labelSV, alphas[svInd]) + b
        if sign(predict) != sign(labelArr[i]):
            errorCount += 1
    print("the training error rate is: %f" % (float(errorCount) / m))

    dataArr, labelArr = loadDataSet('data/testSetRBF2.txt')
    errorCount = 0
    datMat = mat(dataArr)
    labelMat = mat(labelArr).transpose()
    m, n = shape(datMat)
    for i in range(m):
        kernelEval = kernelTrans(sVs, datMat[i, :], ('rbf', k1))
        predict = kernelEval.T * multiply(labelSV, alphas[svInd]) + b
        if sign(predict) != sign(labelArr[i]):
            errorCount += 1
    print("the test error rate is: %f" % (float(errorCount) / m))

在这里插入图片描述

项目案例3: 手写数字识别的优化(有核函数)

项目概述
你的老板要求:你写的那个手写识别程序非常好,但是它占用内存太大。顾客无法通过无线的方式下载我们的应用。
所以:我们可以考虑使用支持向量机,保留支持向量就行(knn需要保留所有的向量),就可以获得非常好的效果。

开发流程
收集数据:提供的文本文件

00000000000000001111000000000000
00000000000000011111111000000000
00000000000000011111111100000000
00000000000000011111111110000000
00000000000000011111111110000000
00000000000000111111111100000000
00000000000000111111111100000000
00000000000001111111111100000000
00000000000000111111111100000000
00000000000000111111111100000000
00000000000000111111111000000000
00000000000001111111111000000000
00000000000011111111111000000000
00000000000111111111110000000000
00000000001111111111111000000000
00000001111111111111111000000000
00000011111111111111110000000000
00000111111111111111110000000000
00000111111111111111110000000000
00000001111111111111110000000000
00000001111111011111110000000000
00000000111100011111110000000000
00000000000000011111110000000000
00000000000000011111100000000000
00000000000000111111110000000000
00000000000000011111110000000000
00000000000000011111110000000000
00000000000000011111111000000000
00000000000000011111111000000000
00000000000000011111111000000000
00000000000000000111111110000000
00000000000000000111111100000000

准备数据:基于二值图像构造向量

将 3232的文本转化为 11024的矩阵

def img2vector(filename):
    returnVect = zeros((1, 1024))
    fr = open(filename)
    for i in range(32):
        lineStr = fr.readline()
        for j in range(32):
            returnVect[0, 32 * i + j] = int(lineStr[j])
    return returnVect


def loadImages(dirName):
    from os import listdir
    hwLabels = []
    print(dirName)
    trainingFileList = listdir(dirName)  # load the training set
    m = len(trainingFileList)
    trainingMat = zeros((m, 1024))
    for i in range(m):
        fileNameStr = trainingFileList[i]
        fileStr = fileNameStr.split('.')[0]  # take off .txt
        classNumStr = int(fileStr.split('_')[0])
        if classNumStr == 9:
            hwLabels.append(-1)
        else:
            hwLabels.append(1)
        trainingMat[i, :] = img2vector('%s/%s' % (dirName, fileNameStr))
    return trainingMat, hwLabels

分析数据:对图像向量进行目测

训练算法:采用两种不同的核函数,并对径向基核函数采用不同的设置来运行SMO算法

测试算法:便携一个函数来测试不同的和函数并计算错误率

def testDigits(kTup=('rbf', 10)):

    # 1. 导入训练数据
    dataArr, labelArr = loadImages('data/trainingDigits')
    b, alphas = smoP(dataArr, labelArr, 200, 0.0001, 10000, kTup)
    datMat = mat(dataArr)
    labelMat = mat(labelArr).transpose()
    svInd = nonzero(alphas.A > 0)[0]
    sVs = datMat[svInd]
    labelSV = labelMat[svInd]
    # print("there are %d Support Vectors" % shape(sVs)[0])
    m, n = shape(datMat)
    errorCount = 0
    for i in range(m):
        kernelEval = kernelTrans(sVs, datMat[i, :], kTup)
        # 1*m * m*1 = 1*1 单个预测结果
        predict = kernelEval.T * multiply(labelSV, alphas[svInd]) + b
        if sign(predict) != sign(labelArr[i]): errorCount += 1
    print("the training error rate is: %f" % (float(errorCount) / m))

    # 2. 导入测试数据
    dataArr, labelArr = loadImages('data/testDigits')
    errorCount = 0
    datMat = mat(dataArr)
    labelMat = mat(labelArr).transpose()
    m, n = shape(datMat)
    for i in range(m):
        kernelEval = kernelTrans(sVs, datMat[i, :], kTup)
        predict = kernelEval.T * multiply(labelSV, alphas[svInd]) + b
        if sign(predict) != sign(labelArr[i]):
            errorCount += 1
    print("the test error rate is: %f" % (float(errorCount) / m))

在这里插入图片描述
使用算法:一个图像识别的完整应用还需要一些图像处理的知识,这里并不打算深入介绍

5、支持向量机 小结

支持向量机是一种分类器。之所以称为“机”是因为它会产生一个二值决策结果,即它是一种 决策“机”。支持向量机的泛化错误率较低,也就是说它具有良好的学习能力,且学到的结果具有 很好的推广性。这些优点使得支持向量机十分流行,有些人认为它是监督学习中好的定式算法。
支持向量机试图通过求解一个二次优化问题来大化分类间隔。在过去,训练支持向量机常 采用非常复杂并且低效的二次规划求解方法。John Platt引入了SMO算法,此算法可以通过每次只 优化2个alpha值来加快SVM的训练速度。本章首先讨论了一个简化版本所实现的SMO优化过程,接着给出了完整的Platt SMO算法。相对于简化版而言,完整版算法不仅大大地提高了优化的速 度,还使其存在一些进一步提高运行速度的空间。有关这方面的工作,一个经常被引用的参考文 献就是“Improvements to Platt’s SMO Algorithm for SVM Classifier Design”①。
核方法或者说核技巧会将数据(有时是非线性数据)从一个低维空间映射到一个高维空间, 可以将一个在低维空间中的非线性问题转换成高维空间下的线性问题来求解。核方法不止在SVM 中适用,还可以用于其他算法中。而其中的径向基函数是一个常用的度量两个向量距离的核函数。
支持向量机是一个二类分类器。当用其解决多类问题时,则需要额外的方法对其进行扩展。 SVM的效果也对优化参数和所用核函数中的参数敏感。

资料来源

https://github.com/apachecn/AiLearning
https://github.com/apachecn/AiLearning/tree/master/docs/ml
机器学习实战(作者: Peter Harrington 出版社: 人民邮电出版社原作名: Machine Learning in Action译者: 李锐 / 李鹏 / 曲亚东 / 王斌 )

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值