莫比乌斯反演
莫比乌斯反演是数论中的重要内容。对于一些函数,如果很难直接求出它的值,而容易求出其倍数和或约数和,那么可以通过莫比乌斯反演简化运算,求得这个函数的值。
开始学习莫比乌斯反演前,我们需要一些前置知识: 积性函数 、 Dirichlet 卷积 、 莫比乌斯函数 。
数论分块:
https://www.luogu.com.cn/problem/P2261
#include <cstdio>
#include <algorithm>
#include <iostream>
using namespace std;
typedef long long ll;
int main() {
ll n, k;
cin >> n >> k;
long long ans = n * k;
for (ll i = 1, j; i <= n; i = j + 1) {
if (k / i != 0){
j = min(k / (k / i), n);
}else{
// break;
j = n; // i大于k时
}
ans -= (k / i) * (j - i + 1) * (i + j) / 2; // 等差数列求和
}
cout << ans << endl;
return 0;
}
莫比乌斯函数
线筛:
void get_mu(int n)
{
mu[1]=1;
for(int i=2;i<=n;i++)
{
if(!vis[i]){prim[++cnt]=i;mu[i]=-1;}
for(int j=1;j<=cnt&&prim[j]*i<=n;j++)
{
vis[prim[j]*i]=1;
if(i%prim[j]==0)break;
else mu[i*prim[j]]=-mu[i];
}
}
}
#include<cstdio>
#include<cstdlib>
#include<iostream>
#include<algorithm>
using namespace std;
#define N 10000010
#define debug cout<<__LINE__<<" "<<__FUNCTION__<<"\n"
inline int read(){
int x=0;char ch=getchar();
while(ch<'0'||ch>'9'){ch=getchar();}
while(ch>='0'&&ch<='9'){x=(x<<1)+(x<<3)+(ch^48);ch=getchar();}
return x;
}
void put(long long x){
if(x<0) putchar('-'),x=-x;
if(x>=10) put(x/10);
putchar((x%10)+48);
}
int prime[N>>2],n,m,cnt;
bool ispri[N];
int mu[N],num[N];
inline void pri(){
register int i,j;
for(i=2;i<=N-10;i++){
if(!ispri[i]){
prime[++cnt]=i;
mu[i]=-1;
}
for(j=1;j<=cnt&&(i*prime[j]<=N-10);j++){
if(i*prime[j]<=N-10) ispri[i*prime[j]]=1;
if(i%prime[j]==0){
break;
}else{
mu[i*prime[j]]=-mu[i];
}
}
}
int res;
for(i=1;i<=cnt;i++){
res=1;
for(j=prime[i];j<=N-10;j+=prime[i],res++){
num[j]+=mu[res];
}
}
for(i=2;i<=N-10;i++) num[i]+=num[i-1];
}
signed main(){
// freopen(".in","r",stdin);
// freopen(".out","w",stdout);
mu[1]=1;
pri();
int T=read(),l,r;
long long ans = 0;
while(T--){
n=read();m=read();ans=0;
if(n>m) swap(n,m);
for(l=1,r;l<=n;l=r+1){
r=min(n/(n/l),m/(m/l));
ans+=(long long)(num[r]-num[l-1])*(n/l)*(m/l);
}
put(ans);putchar('\n');
}
// fclose(stdin);
// fclose(stdout);
return 0;
}