莫比乌斯反演与莫比乌斯函数

自己摸索了这么久 感觉是可以总结了(如果不是因为多校我应该不会接触这个吧),这个结论性比较强,我基本把所有需要证明或者是比较隐晦的中间过程都证明了一遍。其实知道怎么用就行了,但是证明过程中的一些技巧值得思考和体会。

设有函数F(x)f(x),其定义域在正整数范围内,其之间存在着如下给定关系:

F(n)=d|nf(d) F ( n ) = ∑ d | n f ( d )

这个式子的说明了 F(x)可以由 f(x)表示,但是有时候现实是, F(x)我们其实可以很容易求得,但是 f(x)往往不好求,如果可以逆向,由 F(x)表示 f(x),这就是所谓的反演。
恰好在这种情形下的确是有这种反演。
f(n)=d|nμ(nd)F(d)=d|nμ(d)F(nd) f ( n ) = ∑ d | n μ ( n d ) F ( d ) = ∑ d | n μ ( d ) F ( n d )

这两种写法都是一样的,只是加的顺序不一样而已,这里出现了一个μ(d)函数,其定义域也是正整数,接下来介绍一下这个函数。
给出μ(d)的定义:
μ(d)=1,(1)k,0,if d =1if d =p1p2p3...pkotherwise μ ( d ) = { 1 , if  d  =1 ( − 1 ) k , if  d  = p 1 p 2 p 3 . . . p k 0 , otherwise

这便是所谓的莫比乌斯函数。对于这个函数举几个栗子,如μ(7)=-1,7的k为1,μ(6)为1,因为6可以变为2*3,则k为2,μ(4)=0,因为其质因子2的幂大于1,属于otherwise的情况。
先证明这个函数的一个性质(反演的证明会用到):
d|nμ(d)={1,0,if n =1if n >1 ∑ d | n μ ( d ) = { 1 , if  n  =1 0 , if  n  >1

证明:
由唯一分解定理得可以把
n=pa11pa22pa33pa44...pakk n = p 1 a 1 p 2 a 2 p 3 a 3 p 4 a 4 . . . p k a k

因为只要 ak a k 大于1的d的μ(d)为0,对于式子没有贡献,所以,我们只要从 p1 p 1 pk p k 的组合找除数,如只有一个质因子有多少个数,两个质因子有多少个,等等,因为质因子个数与 μ(d) μ ( d ) 的取值有关,即正负1(由上面的莫比乌斯的函数的定义知道)那么有:
d|nμ(d)=C0kC1k+C2k+...+(1)kCkk=i=0k(1)iCik ∑ d | n μ ( d ) = C k 0 − C k 1 + C k 2 + . . . + ( − 1 ) k C k k = ∑ i = 0 k ( − 1 ) i C k i

所以只要证明 ki=0(1)iCik=0 ∑ i = 0 k ( − 1 ) i C k i = 0
又二项式定理得:
(x+y)n=i=0nCinxiyni ( x + y ) n = ∑ i = 0 n C n i x i y n − i

x=1,y=1 x = − 1 , y = 1 带入得证
最后最重要的是证明 f(n)=d|nμ(nd)F(d)=d|nμ(d)F(nd) f ( n ) = ∑ d | n μ ( n d ) F ( d ) = ∑ d | n μ ( d ) F ( n d )
证明:
由文章开头式子的定义的运用可得
d|nμ(d)F(nd)=d|nμ(d)k|ndf(k) ∑ d | n μ ( d ) F ( n d ) = ∑ d | n μ ( d ) ∑ k | n d f ( k )


d|nμ(d)k|ndf(k)=k|nf(k)d|nkμ(d) ∑ d | n μ ( d ) ∑ k | n d f ( k ) = ∑ k | n f ( k ) ∑ d | n k μ ( d )

这里我觉得需要详细证明一下,但是查了许多资料都没有相关证明,所以就自己想了一个证明了方案,是不是太浅显了呢,本质上就是枚举角度的转变。
这部最大转换在于从枚举d转向枚举k,如 d|nμ(d)k|ndf(k) ∑ d | n μ ( d ) ∑ k | n d f ( k ) ,只有当我们确定了d值时,我才能去枚举内嵌的第二个和式。

d|nμ(d)k|ndf(k)=k|nd|nkf(k)μ(d) ∑ d | n μ ( d ) ∑ k | n d f ( k ) = ∑ k | n ∑ d | n k f ( k ) μ ( d )

易知在和式里每一项的 f(k)μ(d) f ( k ) μ ( d ) 的系数都为1,所以实质上,我们只要证明
d|n,k|ndμ(d)f(k)μ(k)f(d) 若 d | n , k | n d , 那 么 有 μ ( d ) f ( k ) 则 μ ( k ) f ( d ) 也 一 定 存 在

我们先证明 μ(k) μ ( k ) 存在,由传递性
k|ndk|n k | n d ⇒ k | n

所有一定存在 μ(k) μ ( k )
证f(d),因为
d|ndm=nm|n d | n ⇒ d m = n ⇒ m | n

现在假设枚举到了 μ(m) μ ( m ) ,则第二和式为 k|nmf(k) ∑ k | n m f ( k )
因为 nm=d n m = d ,所有k一定可以取到d值,所以 f(d) f ( d ) 一定存在
得证
也因此同时我们发现这个和式非常对称
d|nμ(d)k|ndf(k)=k|nf(k)d|nkμ(d) ∑ d | n μ ( d ) ∑ k | n d f ( k ) = ∑ k | n f ( k ) ∑ d | n k μ ( d )

由之前证明的莫比乌斯函数的性质,若 nk>1 n k > 1 ,则 d|nkμ(d)=0 ∑ d | n k μ ( d ) = 0 ,所以只有当k=n为1,
那么

k|nf(k)d|nkμ(d)=f(n) ∑ k | n f ( k ) ∑ d | n k μ ( d ) = f ( n )

所以
f(n)=d|nμ(d)k|ndf(k)=k|nf(k)d|nkμ(d)=f(n) f ( n ) = ∑ d | n μ ( d ) ∑ k | n d f ( k ) = ∑ k | n f ( k ) ∑ d | n k μ ( d ) = f ( n )

证毕

莫比乌斯反演的第二种形式(题目中运用的最多)是

F(n)=n|df(d) F ( n ) = ∑ n | d f ( d )


f(n)=n|dμ(dn)F(d) f ( n ) = ∑ n | d μ ( d n ) F ( d )

证明过程类似:
f(n)=n|dμ(dn)d|kf(k)=n|kf(k)d|knμ(d) f ( n ) = ∑ n | d μ ( d n ) ∑ d | k f ( k ) = ∑ n | k f ( k ) ∑ d | k n μ ( d )

所以也是当k取到n时,才不为0,得证

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值