《超导电子技术及其应用》学习日志(二)

约瑟夫森效应

约瑟夫森理论

约瑟夫森方程

(1)每一个库柏对都可视为质量为2m、电量为2e的复合载流子,定向运动速度v就是库柏相对质心的速度。处于超导态的库柏对凝聚于同一量子态,运载电流时具有完全相同的动量P。用微观波函数来描述所有库柏对的运动,即
ψ = n c 1 / 2 e x p ( i ϕ ) \begin{align} \psi=\sqrt[1/2]{n_c}exp(i\phi) \end{align} ψ=1/2nc exp(iϕ)
式中,nc=ΨΨ*表示库柏对的体密度,φ是波函数的相位。根据量子力学,波函数Ψ满足下面的薛定谔方程
i ℏ ∂ ψ ∂ t = E Ψ \begin{align} i \hbar\frac{\partial\psi}{\partial t}=E\Psi \end{align} itψ=EΨ
其中, ℏ \hbar 是普朗克常量, ℏ \hbar =h/2π,E是量子态的能量。
(2)随着约瑟夫森结一端的库柏对数量的增加,与此相对应,约瑟夫森结另一端的库柏对数量减少,由此可求得流过隧道结的超导电流密度为
J s = J c s i n Δ ϕ = 2 e ∂ n c 1 ∂ t \begin{align} J_s=J_c sin\Delta\phi=2e\frac{\partial n_{c_1}}{\partial t} \end{align} Js=JcsinΔϕ=2etnc1
式中,2e为库柏对两个电子,并有
J s = 2 K ℏ 2 e n c 1 n c 2 \begin{align} J_s=\frac{ 2K}{\hbar} 2e\sqrt{n_{c_1}n_{c_2}} \end{align} Js=2K2enc1nc2
Jc称为隧道结的临界电流密度,K是与隧道结特性有关的常数, n c n_c nc为库柏对的体密度
位相差随时间的变化率为
∂ Δ ϕ ∂ t = 2 e V 0 ℏ \begin{align} \frac{\partial\Delta\phi}{\partial t}=\frac{2eV_0}{\hbar} \end{align} tΔϕ=2eV0
(3)实际上,除电位差 V 0 V_0 V0造成位相差的时间变化外,磁场也将造成位相差的空间变化。磁场可以穿过势垒层,由于绝缘层厚度为d,磁场对超导体还有一个穿透深度 λ \lambda λ,所以存在的磁场宽度为 Λ = 2 λ + d \Lambda=2\lambda+d Λ=2λ+d。磁场和空间的位相差的关系满足下列表达式
∂ Δ ϕ ∂ x = 2 e Λ ℏ B y \begin{align} \frac{\partial\Delta\phi}{\partial x}=\frac{2e\Lambda}{\hbar}B_y \end{align} xΔϕ=2eΛBy
∂ Δ ϕ ∂ y = 2 e Λ ℏ B x \begin{align} \frac{\partial\Delta\phi}{\partial y}=\frac{2e\Lambda}{\hbar}B_x \end{align} yΔϕ=2eΛBx
(3)完整的约瑟夫森方程
超导电流的计算:
J s = J c s i n Δ ϕ \begin{align} J_s=J_c sin\Delta\phi \end{align} Js=JcsinΔϕ
位相差随时间变化
∂ Δ ϕ ∂ t = 2 e V 0 ℏ \begin{align} \frac{\partial\Delta\phi}{\partial t}=\frac{2eV_0}{\hbar} \end{align} tΔϕ=2eV0
磁场影响位相差的空间变化
∂ Δ ϕ ∂ x = 2 e Λ ℏ B y \begin{align} \frac{\partial\Delta\phi}{\partial x}=\frac{2e\Lambda}{\hbar}B_y \end{align} xΔϕ=2eΛBy
∂ Δ ϕ ∂ y = 2 e Λ ℏ B x \begin{align} \frac{\partial\Delta\phi}{\partial y}=\frac{2e\Lambda}{\hbar}B_x \end{align} yΔϕ=2eΛBx

直流约瑟夫森效应

定理:当结两端电压为零时,两个超导体波函数的位相差与时间无关,即可以存在一个超导电流,超导电流的大小由结两端电子对波的位相差决定,其临界电流密度为 J s J_s Js

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值