基带信号与通带信号的区别(BPSK)
基带信号(baseband)是尚未调制到更高频率进行传输的信号,通常,基带信号是指频谱接近零的信号,代表任何调制发生之前的原始消息或数据。。在数字调制系统中,可以理解基带信号为010101这样的比特流:
通带信号(passband)是经过调制的信号,将其转移到载波频率周围的较高频率范围。在时间域上的区别如下:
在频率维度上的两者的区别为:
这里存在一个问题,为什么基带的频域是长这个样子的?
因为上图案例中的基带信号是打电话的人的声波,其频率在20Hz-20KHz(满足“基带信号是指频谱接近零的信号”的定义)。在数字通信系统中,基带信号其实更常见的是0101的矩形脉冲形式,它的频谱往往如下图:
由于90%的能量集中在最大的“主瓣”上,所以我们可以简单的将主瓣的图形认为是矩形脉冲的频谱。
所谓的“调制”,其实呈现在频谱上的结果就是频谱的“搬移”。
数据传输速率和通带带宽的关系(BPSK)
实际的基带信号为一串随机的01
可以把它想象成时域上周期矩形脉冲的叠加,根据傅里叶变换的性质,时间域上的叠加等同于频域上的叠加
假设基带信号的数据传输速率是50Gbps,即1s可以传输50G个0或1,那么基带信号的带宽可以理解为下图:
上图标记的B即是基带信号的带宽,且额外补充一点知识为矩形脉冲的频谱分辨率由
T
0
=
T
o
n
+
T
o
f
f
T_{0}=T_{on}+T_{off}
T0=Ton+Toff决定。
分析矩形脉冲的傅里叶变换知识:
上图对应的矩形脉冲各参数如下:
所以,如果数据传输速率
R
b
R_b
Rb为50Gbps,1s可以传输50G个0或1,所以单个脉冲的持续时间是(
1
R
b
\frac{1}{R_b}
Rb1),所以基带信号的带宽的2倍应该为(基带带宽只考虑正频率部分)
2
∗
π
τ
=
2
∗
π
1
R
b
=
2
∗
π
∗
R
b
(
单位:
r
a
d
/
s
)
\frac{2*\pi}{\tau}=\frac{2*\pi}{\frac{1}{R_b}}=2*\pi*R_b ~~~( 单位:rad/s)
τ2∗π=Rb12∗π=2∗π∗Rb (单位:rad/s)
换算为Hz为
R
b
R_b
Rb(单位Hz)。所以,在基带中,数据传输速率与基带带宽的关系为
数据传输速率(
b
i
t
/
s
)
=
2
∗
基带带宽(
H
z
)
数据传输速率(bit/s)=2*基带带宽(Hz)
数据传输速率(bit/s)=2∗基带带宽(Hz)
由上文分析,调制就是频谱的搬移,所以通带带宽应该等于基带带宽的2倍,但实际上并不是如此,这里涉及根升余弦滤波器。上文我们分析矩形脉冲的频谱时,做了简化,只分析了主瓣,然而主瓣之外是会产生噪声的:
我们希望消除这部分噪声,就需要一个滤波器,这样采样时,如果采到了红色方块的部分可以取值0。可以参考这篇文章:https://zhuanlan.zhihu.com/p/548332797,一些数学大佬算出了升余弦这么个函数将上图的频谱变为下图:
β
=
0
\beta=0
β=0是原始的频谱,
β
=
1
\beta=1
β=1是滤波后的频谱,这个操作滤波后的单个矩形脉冲时域图为:
不再是单纯的矩形,而是存在了上升沿和下降沿。
所以,考虑滤波后的通带带宽为
B
=
(
1
+
α
)
∗
R
b
B=(1+\alpha)*R_b
B=(1+α)∗Rb
其中,
α
\alpha
α为滚降系数,通常会由系统定义。
上述的分析是基于BPSK,即一个脉冲只代表0或1,但在更高的调制格式上,如QPSK等,一个脉冲是代表更多的0或1的,如下图所示:
所以,更通用的结论为:
数据传输速率(
b
i
t
/
s
)
=
符号传输速率(
B
a
u
d
/
s
)
/
码元状态数
数据传输速率(bit/s)=符号传输速率(Baud/s)/码元状态数
数据传输速率(bit/s)=符号传输速率(Baud/s)/码元状态数
通带带宽(
H
z
)
=
(
1
+
α
)
∗
符号传输速率(
B
a
u
d
/
s
)
通带带宽(Hz)=(1+\alpha)*符号传输速率(Baud/s)
通带带宽(Hz)=(1+α)∗符号传输速率(Baud/s)
调制带宽
=
符号传输速率(
B
a
u
d
/
s
)
调制带宽=符号传输速率(Baud/s)
调制带宽=符号传输速率(Baud/s)
调制器带宽的限制会导致频谱截断,即信号损失高频分量,根据傅里叶变换,高频分量的丢失会导致时域脉冲展宽,即上图中理想矩形脉冲的傅里叶变换sinc函数的拖尾在相邻符号间叠加(时域展宽的后果),引发符号间串扰,由此需要光域均衡技术。