2021年10月数学一及第十三届大数赛部分复习

2021国庆高数复习


零、一元微积分的物理应用

做功问题

主要以重力做工为主。本质就是构造体积微元dv和移动距离微元ds
由W=FS,F=mgS= ρ v g S \rho vgS ρvgS
体积微元为扁圆柱,只需要取半径即可,不用*2

水中压力问题

F=PS(压强面积)= ρ g h \rho gh ρgh
只需要找到点距离液面的高度即可,微元为长方形,计算时要
2
高度和截面半径的关系,一般通过相似三角形或勾股定理找到

一、多元微分学(涉及偏微分方程、方向导数与梯度、二元函数泰勒展开,克莱姆法则解方程组)

概念问题

连 续 可 偏 导    ⟹    可 全 微    ⟹    { 可 偏 导 连 续 连续可偏导\implies可全微\implies \begin{cases} 可偏导 \\ 连续 \\ \end{cases} {

  • 除上述关系,其他关系都不能互推,搞清楚以下几个概念。

(1)连续可偏导:该函数连续&&可偏导(满足定义式)
(2) 偏导数连续:以该函数的偏导数作为研究对象,满足连续定义式
(3)二阶连续可偏导:研究对象为二阶偏导数,存在&&连续,    ⟹    \implies 不同字母的二阶混合偏导,可以合并。
(4)计算连续定义式时,常使用sinx ≤ \leq x放缩以及拆分为有界 ∗ \ast 无穷小


2个方程,3个变量的问题。

假设:
{ f ( x , y , z ) = 0 z = z ( x , y ) \begin{cases} f(x,y,z)=0 \\ z=z(x,y) \\ \end{cases} {f(x,y,z)=0z=z(x,y)
d y d x \frac{dy}{dx} dxdy d z d x \frac{dz}{dx} dxdz?

  • 事实上只有3-2=1个自由度,确定了两个关于x(根据所求导数的自变量字母,也就是位与分母上的字母而定)的方程。

  • d y d x \frac{dy}{dx} dxdy d z d x \frac{dz}{dx} dxdz看为主变元,若系数行列式不等于0,有唯一解,通过克莱姆法则求解,分母为行列式的值,分子为行列式的对应变量前的系数用等号右边的常数替换,然后求值。


2个方程,4个变量的问题。

假设
{ u = f ( x , y , z ) z = z ( x , y ) \begin{cases} u=f(x,y,z) \\ z=z(x,y) \\ \end{cases} {u=f(x,y,z)z=z(x,y)

求u的全微分?

  • 事实上有4-2=2个自由度,确定了两个二元方程,这里选取x、y作为自变量。

  • 常用方法,分别拿两个方程分部对x、y求偏导数,解出 ∂ \partial x和 ∂ \partial y不赘述

  • 这里可以使用一阶全微分形式不变性,对隐函数关系式两边求全微分,问题就转变为了 ∂ \partial x和 ∂ \partial y来表示 ∂ \partial z,这个方法可以免于求四次偏导数,因为z只是一个中间变量,与x、y的关系其实是冗余的。


条件与无条件极值

无条件极值只能用于开区间。出现闭区间时候,要分为小于和等于,拆分成无条件极值和条件极值来做,找出所有驻点比较。特别的,其中条件极值若是圆域或椭圆域,也可使用参数方程方法。可以见第十八届江苏省高数竞赛第14题。

  • 在求解条件极值方程组时,主要有以下几种方法

(1)当前两个方程组中只含两个字母时,比较方便,通过单个方程切入,不赘述。
(2)当前两个方程中含有三个字母时,把方程整理成以x,y为主变量的方程,通过第三个方程(通常为x与y构成的方程)可知,前面的齐次方程组有非零解。所以令系数行列式=0,解出lambda。
也可以看成,两个方程x、y前面的系数成比例,从而得到同样的式子。
(3)隐函数形式,一样做,要区分谁是变量,谁是函数值,区别对待。


变换求偏导

变换1
{ z = f ( x , y ) w = w ( x , y , x ) u = u ( x , y ) v = v ( x , y ) \begin{cases} z=f(x,y) \\ w=w(x,y,x)\\ u=u(x,y) \\ v=v(x,y) \\ \end{cases} z=f(x,y)w=w(x,y,x)u=u(x,y)v=v(x,y)

  • 变换前,一个方程,三个变量,确定一个二元函数z=z(x,y)
  • 首先进行z的变换,本质是使用 ∂ w ∂ x \frac{\partial w}{\partial x} xw ∂ w ∂ y \frac{\partial w}{\partial y} yw来代换 ∂ z ∂ x \frac{\partial z}{\partial x} xz ∂ z ∂ y \frac{\partial z}{\partial y} yz
  • 然后加入u,v中间变量,使用链式求导法则即可。

变换2
{ z = f ( x , y ) x = x ( u , v ) y = y ( u , v ) \begin{cases} z=f(x,y) \\ x=x(u,v) \\ y=y(u,v) \\ \end{cases} z=f(x,y)x=x(u,v)y=y(u,v)

  • 变换前,一个方程,三个变量,确定一个二元函数z=z(x,y)
  • 改变换使得x和y变成了中间变量,而u,v成为了最终变量。
  • 写成f(x(u,v),y(u,v))形式,画出关系图,链式求导。

偏微分方程

  1. 对某个自变量求偏积分时,一定要加上另一个字母的函数(这部分在偏积分时被视为常数,在后面无法体现)。
  2. 见第十八江苏省高数竞赛第6题

全微分方程

满足柯西黎曼条件,即为全微分方程。主要有三种解法。
1.通过积分与路径无关先积x再积y;
2.通过偏积分法,设出非偏积分的变量函数;
3.拆解成常见函数的全微分,直接看出来。
比较重要的两个全微分:
d [ 1 2 l n ( x 2 + y 2 ) ] = x d y + y d x x 2 + y 2 d[\frac{1}{2}ln(x^2+y^2)]=\frac{xdy+ydx}{x^2+y^2} d[21ln(x2+y2)]=x2+y2xdy+ydx
d ( a r c t a n x y x ) = x d y − y d x x 2 + y 2 d(arctanx\frac{y}{x})=\frac{xdy-ydx}{x^2+y^2} d(arctanxxy)=x2+y2xdyydx


方向导数与梯度

可以沿任意方向从空间中一点到另一点,而不是必须沿着坐标轴
当方向为梯度方向时,取最大值为,梯度向量的模。


二元函数泰勒展开

(待补充)


二、重积分(包含三重积分,雅克比行列式换元)

二重积分

  • 根据二重积分定义法求极限(特殊情况切分为矩形才能用)
  • 二重积分中值定理,也用于求极限
  • 见到不可积的四种积分,交换次序
  • 二重变限积分求导,考虑交换积分次序,避免一次复杂的积分。
    或表示出抽象函数的原函数运算,然后消掉,不推荐。
  • 当三角换元系数不等于1时,注意换元后角度范围
  • 积分区域D关于y=-x对称的表达式f(x,y)=f(-y,-x)
  • 积分区域D关于y=x对称,考虑轮换性。
  • 参数方程二重积分可以换出发点,随之x,y, θ \theta θ,r都改变。
  • 积分区域部分适合直角坐标,部分适合极坐标时,拆成两块或差的形式计算。

三重积分

  • 可以描述为上下两个曲面形成的立体,考虑投影法,先对z积分。
  • 沿着z轴看,每个切片都有统一的表达形式,可以轻松算面积,考虑切片法。
  • 柱坐标系换元过后产生的r来源于体积微元的宽度,即圆扇形的边长rd θ \theta θ
  • 同理球坐标系换元后产生的 r 2 s i n ϕ r^2sin\phi r2sinϕ来源于微元体积的宽r d ϕ \phi ϕ和长rsin ϕ \phi ϕ d θ d\theta dθ
  • 求坐标和三重积分中值定理也可用于求极限问题
  • 求坐标换元后的面积微元为 d s = s i n ϕ d r d θ ds=sin\phi drd\theta ds=sinϕdrdθ(用于第一类曲面积分计算).直接把体积微元中与r有关的去掉。

通过雅克比行列式变换坐标

假设原变量为x,y,新变量为u,v
J ( u , v ) = ∂ ( x , y ) ∂ ( u , v ) J(u,v)=\frac{\partial(x,y)}{\partial(u,v)} J(u,v)=(u,v)(x,y)

  • 原变量偏新变量,取绝对值,就形成了一个变换系数。
  • 变换过后,第一是要乘上雅克比行列式的值,也就是变换系数,第二是要把每一条积分边界全部换成新变量,然后在新变量形成的正交系下变换为新的积分区域。
  • 雅克比行列式算出来的是一个值,如果这个矩阵不好计算的话,可以用新变量偏原变量,然后计算这个雅克比行列式的倒数就可以了。

三、曲线曲面积分(包含场论初步(散度、旋度、通量、环流量))

  • 首先线面积分第一步可以替换的替换,因为在曲线或曲线上的点都满足积分区域的方程。空间曲面方程一般式为f(x,y,z)=0,空间曲线表示为两个曲面的交线(方程组)。

  • 使用格林公式和高斯公式切记,逆时针、沿坐标轴正方向取正号,否则取负号。因为第二类曲线曲面积分解决的是做功和流量的问题,所以有方向的含义,有正负;而二重积分和三重积分是解决变密度质量问题的,永远为正。

  • 第二类线面积分积分区域对称带来的奇偶性是特别的,因为第二类线面积分的微元都是有向的,通过做功和流量的背景可以想到。
    曲面关于xoy平面对称,函数关于z讨论奇偶性,那么包含dxdy的这项,是偶0奇倍。
    曲线积分关于y轴对称,函数关于x讨论奇偶性,那么包含dy的这项,是偶0奇倍

第二类曲线积分

  • 第一步可以替换的替换,然后观察柯西黎曼条件,选择三种方法,或者混合。

  • 二维曲线积分可以拆分出某个函数的全微分方程的话,也意味着满足四个等价条件,可以直接求出原函数代入两点计算;记住几个常见的全微分ln arctan
    -项数较多且路径复杂的可以拆出部分满足柯西黎曼条件,改变简单路径计算。剩下的部分再单独计算。
    若积分区域包含奇点,要挖洞。
    三维曲线积分用定积分法:必须是参数方程形式。
    大部分用stokes公式:

第二类曲面积分

椭球面某一点切平面的方程:直接将椭球面中的x、y、z拿出一个代换成某点的坐标即可:
x 2 a 2 + y 2 b 2 + z 2 c 2 = 1 \frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1 a2x2+b2y2+c2z2=1在( x 0 , y 0 , z 0 x_0,y_0,z_0 x0,y0,z0)处的切平面为 x x 0 a 2 + y y 0 b 2 + z z 0 c 2 \frac{xx_0}{a^2}+\frac{yy_0}{b^2}+\frac{zz_0}{c^2} a2xx0+b2yy0+c2zz0=1

场论初步

第一组:曲面相关

通量:单位时间曲面向外的流量之和,有效的分量始终垂直于某点
散度:闭合曲面缩减为一个点的时候,点向外的流量。如果处处为0,是无源场,可以改变积分的曲面。
高斯公式:用闭合曲面内每个点的散度之和来计算通量,前提是封闭的曲面,每个点的散度都被包含在其中,也就是第二类曲面积分转换为三重积分
还可以推出高斯公式的二维情况,与格林公式相类比。

第二组:曲线相关

环流量:环绕的某个曲线的量,有效分量始终相切于某点
旋度(有方向):环流量在某一点处的强度,有方向。如果任意点的旋度都为0,就是无旋场,那么可以改变积分路线,这也就是柯西黎曼条件。
斯托克斯公式:沿闭合曲线路径边界上的功,等于路径围绕区域内所有微分矩形边界功之和,第二类曲线积分转换为第二类曲面积分
格林公式:斯托克斯的二维情况(可以在斯托克斯公式的二阶子式中看到),第二类曲线积分转换为二重积分

多元微分

梯度(向量):可以想象成在空间中,一条鱼从高温的点直接游向低温的点,而不是每次只能沿着三个坐标轴方向移动。

四、空间解析几何(包含线性代数第三章、旋转曲面)

旋转曲面

  • 二维曲线绕某坐标轴旋转形成的旋转曲面方程求法:
    寻找某一个切面的圆周,建立方程:圆周上的某点的到旋转轴的欧几里得距离=曲线非旋转轴的坐标绝对值。反映到方程上来看,就是把原方程非旋转轴的字母的平方代换为这个字母和未出现过字母的平方和。
    如:曲线:z= y 2 y^2 y2绕z轴旋转形成的空间曲面方程为: z = x 2 + y 2 z=x^2+y^2 z=x2+y2

  • 三维曲线绕某坐标轴旋转形成的旋转曲面方程求法:
    把旋转体看成无数垂直于旋转轴的圆被旋转轴串了起来,仍然是找一个一个切面的圆周,通过空间直线的点向式,用旋转轴字母分别表示另外两个字母,目的是把临时设的字母消去,最后只剩下原字母x,y,z。建立方程:圆周上某点到旋转轴的欧几里得距离的平方=用旋转轴字母表示的欧几里得距离的平方

  • 三维曲线绕任意直线旋转形成的旋转曲面方程求法:
    已知直线L点法式(方向向量为 S ⃗ \vec{S} S ),空间曲线 { F ( x , y , z ) = 0 G ( x , y , z ) = 0 \begin{cases} F(x,y,z)=0 \\ G(x,y,z)=0 \\ \end{cases} {F(x,y,z)=0G(x,y,z)=0
    任取一个纬圆,以下都在这个纬圆上考虑
    在空间曲线上取一点 P 1 ( x 1 , y 1 , z 1 ) P_1(x_1,y_1,z_1) P1(x1,y1,z1)字母表示,但后面要消掉
    在直线L上取一点 M 0 ( x 0 , y 0 , z 0 ) M_0(x_0,y_0,z_0) M0(x0,y0,z0)确定数字确定的点
    该纬圆上任意一点,也就是旋转面方程上一般的一点 P ( x , y , z ) P(x,y,z) P(x,y,z)字母要留下
    构建三个关系:
    一个相等关系,一个垂直关系,一个在空间曲线上

{ ∣ P 1 M 0 ⃗ ∣ = ∣ P M 0 ⃗ ∣ P 1 P ⃗ ⊥ S ⃗ F ( x 1 , y 1 , z 1 ) = 0 G ( x 1 , y 1 , z 1 ) = 0 \begin{cases} \vert \vec{P_1M_0}\vert=\vert \vec{PM_0}\vert\\ \vec{P_1P}⊥\vec{S} \\ F(x_1,y_1,z_1)=0 \\ G(x_1,y_1,z_1)=0 \\ \end{cases} P1M0 =PM0 P1P S F(x1,y1,z1)=0G(x1,y1,z1)=0
最终化简只留下x,y,z的方程就是所求的旋转曲面方程

锥面

已知准线和顶点

在空间通过一定点,且与定曲线(准线)相交的一族直线(母线)构成的曲面为锥面。 构建方法,在准线上任取一点 M 0 M_0 M0,考虑此处的一条母线
1.通过准线上的一点 M 0 ( x 0 , y 0 , z 0 ) M_0(x_0,y_0,z_0) M0(x0,y0,z0)和顶点A,列出这条母线的方程
2. ( x 0 , y 0 , z 0 ) (x_0,y_0,z_0) (x0,y0,z0)也满足准线方程
3.根据两组方程消去参数,解出x,y,z的关系式(三元方程)。
key:取的点同时在准线上和母线上,三点共线,两向量成比例,再代入准线方程消去参数即可。

柱面

柱面定义:空间中由平行于定方向且与一条定曲线相交的一族平行直线所生成的曲面叫做柱面。其中定方向叫做柱面的方向,定曲线叫做柱面的准线。平行直线族中的每一条直线叫做柱面的母线。

情况1:已知三条母线的圆柱面

先求出母线的方向向量,找一个垂直于母线的平面,与母线的三个交点确定一个纬圆,找出圆心坐标。取柱面上任意点的坐标 ( x , y , z ) (x,y,z) (x,y,z)通过空间点到直线的距离,建立方程。
例如第十三届大数赛第4题

情况2:已知准线和母线的方向向量

设p(u,v,w)在准线上,满足f(u,v,w)=0;同时写出一条经过p的母线(用参数方程来写)把u,v,w通过参数方程的中间参数t表示为xyz的关系

情况3:已知轴线和圆柱面上一点

通过点到直线距离算出纬圆半径,然后同情况1。

几个重要的距离

1.点到面的距离(投影与点乘)
在面上任取一点,与平面外的点相连,这条线在平面法向量上的投影就是点到面的距离。
2.点M到空间直线的距离:在直线上取一点 M 0 M_0 M0,把直线的方向向量 s ⃗ \vec{s} s 移动至以 M 0 M_0 M0为起点。分别连接 s ⃗ \vec{s} s 与M点和 M 0 M_0 M0,构成了一个三角形。根据三角形面积的两种计算方法得到等式: ∣ s ⃗ ∣ ∗ d = ∣ M 0 M × s ⃗ ∣ \vert \vec{s}\vert*d=\vert M_0M\times\vec{s} \vert s d=M0M×s
3.异面直线的距离:

  • 先判断两条直线是否异面。在两条直线 L 1 和 L 2 L_1和L_2 L1L2上分别取点 M 1 M_1 M1 M 2 M_2 M2,取 M 1 M 2 → \overrightarrow{M_1M_2} M1M2 和两条直线的法向量 s 1 ⃗ \vec{s_1} s1 , s 2 ⃗ \vec{s_2} s2 计算混合积,若混合积为0,则两直线共面,也可以理解为以三条直线为棱构成的平行六面体的体积为0,所以 M 1 M 2 → \overrightarrow{M_1M_2} M1M2 和两条直线的法向量 s 1 ⃗ \vec{s_1} s1 , s 2 ⃗ \vec{s_2} s2 都共面,进而 L 1 和 L 2 L_1和L_2 L1L2共面。
  • 接下来进行计算,过 L 1 L_1 L1上一点 M 1 M_1 M1 L 2 L_2 L2的平行线,现在 L 1 L_1 L1 L 3 L_3 L3形成了一个平面 π \pi π,问题化归为求点 M 2 M_2 M2到平面 π \pi π的距离。

4.投影与平面系方程问题

  • 曲线在坐标屏幕上的投影,消去非坐标平面字母,加上方程:该字母=0
  • 投影的表示方法cos和单位向量方法,作用有求线面距离。。。
  • 三种夹角范围都是,区别于高中二面角[0, π 2 \frac{\pi}{2} 2π]

求一条直线在一个平面上 π \pi π的投影,其实就是求过L且垂直于 π \pi π的平面,这个平面与 π \pi π的交线就是所求投影。
两种方法:
i:使用平面系方程
ii:通常直线方程由点向式给出,直接求出与平面 π \pi π垂直,且过直线的平面方程。
直线方向向量 π \pi π的法向量、与直线上具体取一点,与任意的(x,y,z)连成的向量,三个向量共面。用行列式求解,几何意义为三个向量为棱长的空间六面体体积为0

向量代数

求单位向量是正负两个

五、级数(包含Fourier级数)

  • 在级数中添加括号,保持或提高收敛性(比如1,-1震荡的两项合并后变为0,整个数列变为常数列)
  • 添加绝对值,降低收敛性,每项跑向0的速度没有改变,而相邻项的抵消没有了。所以绝对收敛要求更高
  • 已知常数项级数收敛    ⟹    \implies 部分和存在&&一般项趋于0。
  • 调和级数发散两种证法:
  • 对每项平方,可能使得原本收敛的交错级数变为发散,因为正负抵消没有了。
  • 一个收敛级数 a n a_n an和一个绝对收敛级数 b n    ⟹    a n ∗ b n b_n\implies a_n*b_n bnanbn 绝对收敛
    原理: a n a_n an一般项极限存在,提供有界条件M; b n b_n bn提供绝对收敛条件,相乘即见。

关于不满足莱布尼兹准则的级数判断条件收敛的方法:
1.考虑部分和的奇数项或偶数项,若存在+原级数第无穷项=0,推出部分和存在,收敛。
2.考虑两两加括号后的级数部分和存在,若存在+原级数第无穷项=0,推出部分和存在,收敛。
3.交换奇偶项后,原级数敛散性不变,可以使用莱布尼兹判别法。
4.用泰勒公式将一般项分解,其中部分交错项会抵消,边成一个可以使用莱布尼兹判别法的级数和一个正项级数。

Fourier级数

在展开为傅里叶级数后,通常通过代入0,来计算一些收敛的级数的值。
∑ n = 1 ∞ 1 ( 2 n − 1 ) 2 = 1 + 1 3 2 + 1 5 2 + . . . = π 2 8 ( S 1 ) \sum_{n=1}^\infty \frac{1}{(2n-1)^2}=1+\frac{1}{3^2}+\frac{1}{5^2}+...=\frac{\pi^2}{8}\qquad (S_1) n=1(2n1)21=1+321+521+...=8π2(S1)
∑ n = 1 ∞ 1 n 2 = 1 + 1 2 2 + 1 3 2 + . . . = π 2 6 ( S 2 ) \sum_{n=1}^\infty \frac{1}{n^2}=1+\frac{1}{2^2}+\frac{1}{3^2}+...=\frac{\pi^2}{6}\qquad (S_2) n=1n21=1+221+321+...=6π2(S2)
∑ n = 1 ∞ ( − 1 ) n + 1 1 n 2 = 1 − 1 2 2 + 1 3 2 − . . . = π 2 12 ( S 3 ) \sum_{n=1}^\infty (-1)^{n+1}\frac{1}{n^2}=1-\frac{1}{2^2}+\frac{1}{3^2}-...=\frac{\pi^2}{12}\qquad (S_3) n=1(1)n+1n21=1221+321...=12π2(S3)
∑ n = 1 ∞ 1 ( 2 n ) 2 = 1 2 2 + 1 4 2 + . . . = π 2 24 ( S 4 ) \sum_{n=1}^\infty \frac{1}{(2n)^2}=\frac{1}{2^2}+\frac{1}{4^2}+...=\frac{\pi^2}{24}\qquad (S_4) n=1(2n)21=221+421+...=24π2(S4)
S 4 = 1 4 S 2 S_4=\frac{1}{4}S_2 S4=41S2
S 2 + S 3 = 2 S 1 S_2+S_3=2S_1 S2+S3=2S1
S 2 = S 1 + 1 4 S 2 S_2=S_1+\frac{1}{4}S_2 S2=S1+41S2 其实 S 1 是 S 2 的 奇 数 项 S_1是S_2的奇数项 S1S2
傅里叶级数也可以用在证明同时有两个周期的函数是否为常值函数。

求和函数

  • 为什么分式情况,x的次数低于分母,S(0)要单独讨论,因为为了凑方便求导的形式,乘一个除一个x,就产生了1/x,导致x=0点处在收敛域内,却没定义。
  • 通过求导建立一阶或二阶微分方程来求解。

六、微分方程(包含Bernoulli方程Eular方程)

  • 无法分离变量或凑成标准形式的一阶线性微分方程,可以考虑交换y与x的因变量自变量关系;凑出y/x;凑出tan半角等进行换元。
  • 通过特解反推原微分方程时,用复数凑平方差时,实部看成一个整体,虚部看成一个整体

七、微分中值定理+积分中值定理(包含重积分中值定理)

微分中值定理

1. f n ( ξ ) = 0 f^n(\xi)=0 fn(ξ)=0
n=1,两点罗尔,或区间内部取极值点,用费马引理

定积分证明

1.函数连续

  • 使用定积分的基本性质,如出现一个带积分号,一个不带,可以转化为都带,或都不带(积分中值定理)。
  • 带绝对值的通吃要用到不等式:积分的绝对值<=绝对值的积分 ∣ ∫ f ( x ) d x ∣ < = ∫ ∣ f ( x ) ∣ \vert\int f(x)dx\vert<=\int\vert f(x)\vert f(x)dx<=f(x)dx(亡羊补牢小于等于未雨绸缪)

2.函数连续+单调

  • 构造辅助函数,将b变为变量x,并用单调性进行证明
  • 要证明的区间不同时,考虑换元,统一区间。常见的有积分区间相同,使用区间再现;积分区间产生了平移,换元加减平移量;积分区间关于原点对称,负代换。
    特别注意一个 ∫ a b    ⟹    ∫ 0 1 \int_a^b\implies\int_0^1 ab01,x=a+(b-a)t (0<=x<=1)
  • 用积分来放缩级数,在每个长度为1的区间内,分别观察右端点和左端点,根据单调性得到不等关系,然后求和。
  • 只知道函数和一些定值的大小关系,考虑通过这些量作差的乘积或比值>=0入手。

3.函数可导
拉格朗日—积分中无f’
牛顿莱布尼兹公式—积分中有f’如 ∫ f ′ ( x ) d x \int f'(x)dx f(x)dx

带绝对值:积分的绝对值<=绝对值的积分 ∣ ∫ f ( x ) d x ∣ < = ∫ ∣ f ( x ) ∣ \vert\int f(x)dx\vert<=\int\vert f(x)\vert f(x)dx<=f(x)dx
带平方:柯西不等式 ( ∫ a b f ( x ) g ( x ) d x ) 2 < = ∫ a b f 2 ( x ) d x ∫ a b g 2 ( x ) d x (\int_a^bf(x)g(x)dx)^2<=\int_a^bf^2(x)dx\int_a^bg^2(x)dx (abf(x)g(x)dx)2<=abf2(x)dxabg2(x)dx
看到区间长度的倒数:积分中值定理
只要导数闭区间可导,也可用介值定理最值定理

4.高阶可导
看到,正常的拉格朗日余项导数阶数比阶乘数少一阶、结论中为开区间,对F(X)使用泰勒公式
否则直接对f(x)使用泰勒公式
使用泰勒公式时,通常左端为区间端点或知道函数值的点,在知道一阶导数或区间中点处展开。

5.伽马函数
τ ( n ) = ∫ 0 + ∞ x n − 1 e − x d x = ( n − 1 ) ! \tau(n)=\int_0^{+\infty}x^{n-1}e^{-x}dx=(n-1)! τ(n)=0+xn1exdx=(n1)!
τ ( n + 1 ) = τ ( n ) ∗ n \tau(n+1)=\tau(n)*n τ(n+1)=τ(n)n
τ ( 1 ) = 1 \tau(1)=1 τ(1)=1
τ ( 1 2 ) = π \tau(\frac{1}{2})=\sqrt\pi τ(21)=π

八、大数赛真题

第一届预赛
1.二重积分在直角坐标和极坐标都无法计算时,考虑换元,并用雅可比矩阵计算出比例系数
2.用积分来放缩级数时,要分增减,见汤高数辅导讲义P117例3
3.等价无穷大可以转化为等价无穷小的的倒数

第二届预赛
1.连续的n个有规律的乘积,可以考虑在前面配凑一个,然后连续使用n次公式化简。
2.伽马函数的变形,可以用分部积分法证明。
3.多元函数求复杂偏导时,过程中间变量先不要写成最终变量。
4.关于实根数量,常用反证法。
5.曲线积分时,可以用两个过原点的环加减得出不过原点的曲线路径。
6.空间物体绕方向为 ( α , β , γ ) (\alpha,\beta,\gamma) (α,β,γ)的距离表示为:

第三届预赛
1.复杂极限各部分都存在,可以拆开分别计算。
2.sgn(x)函数
3.Stolz定理
4.物体引力大小计算,分量计算。

第四届预赛
1.ln中含有阶乘的极限,利用对数的性质,把ln内的连乘转换为连加,提取一个1/n,放大为 l n 1 , l n 2 2 , l n 3 3 . . . l n n n ln1,\frac{ln2}{2},\frac{ln3}{3}...\frac{lnn}{n} ln1,2ln2,3ln3...nlnn,使用stolz定理求解。
2.其他含有阶乘的极限可以考虑,凑定积分定义,或使用斯特林公式。
3.积分带有三家函数的绝对值,拆区间,写成积分求和形式。广义积分为无穷区间,放缩为 n π < = x < = ( n + 1 ) π n\pi<=x<=(n+1)\pi nπ<=x<=(n+1)π
4.泰勒公式一阶展开,求方程近似解,sin的一阶泰勒展开的余项为 s i n ( θ t ) 2 x 2 , e r b u s \frac{sin(\theta t)}{2}x^2,erbus 2sin(θt)x2,erbus
5.证明抽象级数收敛,可以考虑部分和有上界

第五届预赛
1.带sin( ∞ \infty )的极限,利用三角函数的周期性,减去 2 n π 2n\pi 2nπ使得出现 ∞ − ∞ \infty-\infty
在计算同样特征的级数时,可以减去 2 n π 2n\pi 2nπ再加上 2 n π 2n\pi 2nπ,并提出一个交错项,化为交错级数考虑。
2.含有 s i n x x \frac{sinx}{x} xsinx等原函数非初等函数的积分的无穷区间广义积分(非负单调递减),可以拆成 n π n\pi nπ为一个单位长度的积分,并转化为级数考虑,级数与此积分同敛散。
3.对称区间积分考虑,拆开,并对其中一部分倒代换,再次变为同一积分区间,进行化简。
4.证明题中,有导数恒大于0条件,想到单调,并存在反函数。
5.要使一个三重积分最小,那么被积函数小于等于0的情况下,积分区域尽量大。
6.积分区域为椭球体,使用雅克比行列式变换为球体计算,记得乘上变换系数。
7.不标准的椭圆,通过二次型矩阵求特征值来变换到标准形式,再化为参数方程形式。
8.用积分来放缩级数(待补充),原理,级数的标号作为上下限,加上左右多的矩形。n充分大时,1+lnn< n 1 2 n^{\frac{1}{2}} n21

第六届预赛
1.级数中含阶乘的倒数,考虑裂项
2.球缺指的是用一个平面截球体,其中的一部分。

第八届预赛
1.三重积分坐标换元,记得乘上雅克比行列式的绝对值。在曲面积分中,可以直接代入球面方程化简,而三重积分中,可以考虑轮换对称性。
2.根据题目需证明的结论,有时要对函数的变限积分或导数使用拉格朗日中值定理或泰勒公式。
3.傅里叶级数理论可以用来证明同时拥有几个周期的函数是否为常值函数。

2021预赛南邮模拟卷一
1.通过抽象函数表达式求具体函数,考虑代特殊值、凑导数,形成微分方程。
2.二重积分定义,连续两次求和就是把平面区域切割成小正方形。
3.计算二维曲线 L 1 L_1 L1,绕二维直线 L 2 L_2 L2形成的旋转曲面面积,先使用点到直线的距离公式,表示出 L 1 L_1 L1 L 2 L_2 L2距离的函数d,把曲线 L 1 L_1 L1切割为微元s,使用勾股定理,或第一类曲面积分的公式,写出ds,再联系d使用柱壳法写出一个圈面积的微元dA,最后在区间上积分,计算出答案。
3.复杂级数求和,尝试通过提取公比的倒数,在分子上凑出差,进行裂项。
4.积分不等式两边平方一个在内一个在外,考虑柯西不等式。
5.第二类曲面积分的曲面复杂时,考虑换元,并使用奇偶性积分缩小区间。
6.计算过三条线的空间柱面方程:先找一个垂直于三条线的平面 σ \sigma σ方程,找出三个交点,通过三个交点构成的圆所在球体方程和平面 σ \sigma σ(2个方程)写出该空间中圆的方程。
然后根据平面 σ \sigma σ的法向量,写出圆柱中轴线方程。以此为基准,写出圆柱面上任意一点的参数方程,分别代入【三个交点构成的圆所在球体方程和平面 σ \sigma σ】,最后通过消去参数t,得到所求方程。

2021预赛南邮模拟卷二
1. 1 + 3 + 5 + . . . ( 2 n − 1 ) = n 2 1+3+5+...(2n-1)=n^2 1+3+5+...(2n1)=n2
2.参数方程求高阶导数时,全程的求导变量都是参数t
3.含参积分上下限为常数,可以直接先把积分变量视为常数求导再积分。
4.对高函导数使用介值定理时,仅仅n阶可导不行,需要n阶导数连续才行。
5.复杂的第一类曲面积分,考虑找出切平面法向量,转化为第二类曲面积分,再使用高斯公式。
6证明级数或积分不等式时,步骤中常出现基本不等式
7.计算沿第一卦限对角线的椎体积分,可以在对角线上划分小区间为微元。
8.以斐波那契数列为系数的幂级数收敛域时,把 a n a n + 1 \frac{a_n}{a_{n+1}} an+1an看作一个整体,转化为通过先斩后奏求数列极限问题。

总结

国庆节期间主要对高数下册多元函数微分学、多元函数积分学与级数进行强化,下一阶段张宇高数18讲与全国大学生数学竞赛1-12届真题同步进行,有多余时间学习小候七中值定理醒脑13讲,下一阶段至11.13日比赛结束。
2021年12月1日更新,最终收获第十三届全国大学生数学竞赛二等奖。

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

WYF19999

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值