给你一个以 (radius, x_center, y_center) 表示的圆和一个与坐标轴平行的矩形 (x1, y1, x2,
y2),其中 (x1, y1) 是矩形左下角的坐标,(x2, y2) 是右上角的坐标。如果圆和矩形有重叠的部分,请你返回 True ,否则返回 False 。
换句话说,请你检测是否 存在 点 (xi, yi) ,它既在圆上也在矩形上(两者都包括点落在边界上的情况)。
示例1:
输入:radius = 1, x_center = 0, y_center = 0, x1 = 1, y1 = -1, x2 = 3, y2 = 1
输出:true
解释:圆和矩形有公共点 (1,0)
思路
和题目描述的一致,需要确定的即是否存在某个点,既在正方形内(含边界),又在圆内(含边界)
对此,只需要找到正方形内(含边界)距离圆心最近的点,判断其到圆心的距离是否小于等于半径
然而,距离
d ^ 2 = (x1 - x2) ^ 2 + (y1 - y2) ^ 2
因此实际上在正方形内要找的是某点的两个坐标,其横坐标与圆心横坐标最接近,其纵坐标与圆心纵坐标最接近,找到之后计算距离即可
代码
class Solution {
public:
bool checkOverlap(int radius, int x_center, int y_center, int x1, int y1, int x2, int y2) {
int x,y; //离圆心最近的点
if(x_center>x2) x=x2;
else if(x_center<x1) x=x1;
else x=x_center;
if(y_center>y2) y=y2;
else if(y_center<y1) y=y1;
else y=y_center;
int d=pow(x-x_center,2)+pow(y-y_center,2); //判断半径与点到圆心的距离
if(d<=radius*radius) return true;
return false;
}
};