Java数据结构与算法_13 常用算法(贪心算法-集合覆盖问题、普利姆算法-修路问题、克鲁斯卡尔算法-公交站问题、迪杰斯特拉+弗洛伊德算法-最短路径问题、马踏棋盘算法)


本人是个新手,写下博客用于自我复习、自我总结。
如有错误之处,请各位大佬指出。
学习资料来源于:尚硅谷


贪心算法

贪心算法介绍

  1. 贪婪算法(贪心算法)是指在对问题进行求解时,在每一步选择中都采取最好或者最优(即最有利)的选择,从而希望结果是最好或者最优的算法

  2. 贪婪算法所得到的结果不一定是最优的结果(有时候会是最优解),但是都是相对近似(接近)最优解的结果


应用-集合覆盖

假设存在如下表的需要付费的广播台,以及广播台信号可以覆盖的地区。 如何选择最少的广播台,让所有的地区都可以接收到信号
在这里插入图片描述
如何找出覆盖所有地区的广播台的集合呢?假如真的使用穷举法实现,假设总共有n个广播台,列出所有可能的广播台的集合,则广播台的组合总共有2ⁿ -1 个。假设每秒可以计算10个子集:在这里插入图片描述
显然数量很大,效率会很低。

思路分析:

目前并没有算法可以快速计算得到准确的值,但使用贪婪算法,则可以得到非常接近的解,并且效率高。选择策略上,因为需要覆盖全部地区的最小集合:

  1. 遍历所有的广播电台,找到一个覆盖了最多未覆盖的地区的电台(此电台可能包含一些已覆盖的地区,但没有关系)
  2. 将这个电台加入到一个集合中(比如ArrayList),想办法把该电台覆盖的地区在下次比较时去掉。
  3. 重复第1步直到覆盖了全部的地区

贪心算法注意事项和细节

  1. 贪婪算法所得到的结果不一定是最优的结果(有时候会是最优解),但是都是相对近似(接近)最优解的结果
  2. 比如上题的算法选出的是K1, K2, K3, K5,符合覆盖了全部的地区
  3. 但是我们发现 K2, K3,K4,K5 也可以覆盖全部地区,如果K2 的使用成本低于K1,那么我们上题的 K1, K2, K3, K5 虽然是满足条件,但是并不是最优的.

完整代码

import java.util.ArrayList;
import java.util.HashMap;
import java.util.HashSet;

public class GreedyAlgorithm {

	public static void main(String[] args) {
		// 创建广播电台,放入到Map
		HashMap<String, HashSet<String>> broadcasts = new HashMap<String, HashSet<String>>();
		// 将各个电台放入到broadcasts
		HashSet<String> hashSet1 = new HashSet<String>();
		hashSet1.add("北京");
		hashSet1.add("上海");
		hashSet1.add("天津");

		HashSet<String> hashSet2 = new HashSet<String>();
		hashSet2.add("广州");
		hashSet2.add("北京");
		hashSet2.add("深圳");

		HashSet<String> hashSet3 = new HashSet<String>();
		hashSet3.add("成都");
		hashSet3.add("上海");
		hashSet3.add("杭州");

		HashSet<String> hashSet4 = new HashSet<String>();
		hashSet4.add("上海");
		hashSet4.add("天津");

		HashSet<String> hashSet5 = new HashSet<String>();
		hashSet5.add("杭州");
		hashSet5.add("大连");

		// 加入到map
		broadcasts.put("K1", hashSet1);
		broadcasts.put("K2", hashSet2);
		broadcasts.put("K3", hashSet3);
		broadcasts.put("K4", hashSet4);
		broadcasts.put("K5", hashSet5);

		// allAreas 存放所有的地区
		HashSet<String> allAreas = new HashSet<String>();
		allAreas.add("北京");
		allAreas.add("上海");
		allAreas.add("天津");
		allAreas.add("广州");
		allAreas.add("深圳");
		allAreas.add("成都");
		allAreas.add("杭州");
		allAreas.add("大连");

		// 创建ArrayList, 存放选择的电台集合
		ArrayList<String> selects = new ArrayList<String>();

		// 定义一个临时的集合,在遍历的过程中,存放遍历过程中的电台覆盖的地区和当前还没有覆盖的地区的交集
		HashSet<String> tempSet = new HashSet<String>();

		// 定义个maxKey,保存在一次遍历过程中,能够覆盖最大未覆盖的地区对应的电台的key
		// 如果maxKey 不为null , 则会加入到 selects
		String maxKey = null;

		while (allAreas.size() != 0) { // 如果allAreas 不为0, 则表示还没有覆盖到所有的地区
			// 每进行一次while,都需要重置
			maxKey = null;

			// 遍历 broadcasts, 取出对应key
			for (String key : broadcasts.keySet()) {
				// 每进行一次for,都需要重置
				tempSet.clear();
				// 当前这个key能够覆盖的地区
				HashSet<String> areas = broadcasts.get(key);
				tempSet.addAll(areas);
				// 求出tempSet 和 allAreas 集合的交集, 交集会赋给 tempSet
				tempSet.retainAll(allAreas);
				// 如果当前这个集合包含的未覆盖地区的数量,比maxKey指向的集合地区还多
				// 就需要重置maxKey
				if (tempSet.size() > 0
						&& (maxKey == null || tempSet.size() > broadcasts.get(
								maxKey).size())) {
					maxKey = key;
				}
			}
			// maxKey != null, 就将maxKey 加入selects
			if (maxKey != null) {
				selects.add(maxKey);
				// 将maxKey指向的广播电台覆盖的地区,从 allAreas 去掉
				allAreas.removeAll(broadcasts.get(maxKey));
			}else{
				System.out.println("没有办法将所有地区覆盖");
				break;
			}

		}

		System.out.println("得到的选择结果是" + selects);// [K1,K2,K3,K5]

	}

}


最小生成树相关概念

在进行接下来的算法前,先看最小生成树的概念。

最小生成树(Minimum Cost Spanning Tree),简称MST。

简单来说,给定一个带权的无向连通图,如何选取一棵生成树,使树上所有边上权的总和为最小。

它有以下特点:

  1. N个顶点,一定有N-1条边
  2. 它一定会包含全部顶点
  3. N-1条边都在图中
    在这里插入图片描述
    而求最小生成树的算法主要是普里姆算法和克鲁斯卡尔算法

普里姆算法

普里姆算法介绍

普利姆(Prim)算法求最小生成树,也就是在包含n个顶点的连通图中,找出只有(n-1)条边包含所有n个顶点的连通子图,也就是所谓的极小连通子图。

普利姆的算法如下:

  1. 设G=(V,E)是连通网,T=(U,D)是最小生成树,V,U是顶点集合,E,D是边的集合
  2. 若从顶点u开始构造最小生成树,则从集合V中取出顶点u放入集合U中,标记顶点v的visited[u]=1
  3. 若集合U中顶点ui与集合V-U中的顶点vj之间存在边,则寻找这些边中权值最小的边,但不能构成回路。将顶点vj加入集合U中,将边(ui,vj)加入集合D中,标记visited[vj]=1。
  4. 重复步骤②,直到U与V相等,即所有顶点都被标记为访问过。此时D中有n-1条边

应用-修路问题

在这里插入图片描述

  1. 假如某乡里有7个村庄(A, B, C, D, E, F, G) ,现在需要修路把7个村庄连通
  2. 各个村庄的距离用边线表示(权) ,比如 A – B 距离 5公里
  3. 问:如何修路保证各个村庄都能连通,并且总的修建公路总里程最短?

思路分析:

根据上面提到的普利姆算法的文字描述,简单来说就是,现在找一个顶点(假如是A)。那么从A开始处理,找与它相连的权值最小的边。可以看出是A-G。把G点加入后,接下来找与A点和G点相连的权值最小的边,是G-B。之后每加入一个顶点就再次判断,同时需要注意看是否形成回路。

具体步骤:

  1. 从< A >顶点开始处理
    所有的边:A-C [7] A-G[2] A-B[5]
    选择A-G
  2. <A,G> 开始 , 将A 和 G 顶点和他们相邻的还没有访问的顶点进行处理
    所有的边:A-C[7] A-B[5] G-B[3] G-E[4] G-F[6]
    选择G-B
  3. <A,G,B> 开始,将A,G,B 顶点 和他们相邻的还没有访问的顶点进行处理
    所有的边:A-C[7] G-E[4] G-F[6] B-D[9]
    选择G-E
  4. {A,G,B,E}->F//第4次大循环 , 对应 边<E,F> 权值:5
  5. {A,G,B,E,F}->D//第5次大循环 , 对应 边<F,D> 权值:4
  6. {A,G,B,E,F,D}->C//第6次大循环 , 对应 边<A,C> 权值:7

完整代码

import java.util.Arrays;

public class PrimAlgorithm {

	public static void main(String[] args) {
		// 测试看看图是否创建ok
		char[] data = new char[] { 'A', 'B', 'C', 'D', 'E', 'F', 'G' };
		int verxs = data.length;
		// 邻接矩阵的关系使用二维数组表示,10000用来表示两个点不联通
		int[][] weight = new int[][] { 
				{ 10000, 5, 7, 10000, 10000, 10000, 2 },
				{ 5, 10000, 10000, 9, 10000, 10000, 3 },
				{ 7, 10000, 10000, 10000, 8, 10000, 10000 },
				{ 10000, 9, 10000, 10000, 10000, 4, 10000 },
				{ 10000, 10000, 8, 10000, 10000, 5, 4 },
				{ 10000, 10000, 10000, 4, 5, 10000, 6 },
				{ 2, 3, 10000, 10000, 4, 6, 10000 }, };

		// 创建MGraph对象
		MGraph graph = new MGraph(verxs);
		// 创建一个MinTree对象
		MinTree minTree = new MinTree();
		minTree.createGraph(graph, verxs, data, weight);
		// 输出
		minTree.showGraph(graph);
		// 测试
		minTree.prim(graph, 1);
	}

}

// 创建最小生成树->村庄的图
class MinTree {
	// 创建图的邻接矩阵
	/**
	 * @param graph
	 *            图对象
	 * @param verxs
	 *            图对应的顶点个数
	 * @param data
	 *            图的各个顶点的值
	 * @param weight
	 *            图的邻接矩阵
	 */
	public void createGraph(MGraph graph, int verxs, char data[], int[][] weight) {
		int i, j;
		for (i = 0; i < verxs; i++) {// 顶点
			graph.data[i] = data[i];
			for (j = 0; j < verxs; j++) {
				graph.weight[i][j] = weight[i][j];
			}
		}
	}

	// 显示图的邻接矩阵
	public void showGraph(MGraph graph) {
		for (int[] link : graph.weight) {
			System.out.println(Arrays.toString(link));
		}
	}

	// 编写prim算法,得到最小生成树
	/**
	 * @param graph
	 *            图
	 * @param v
	 *            表示从图的第几个顶点开始生成'A'->0 'B'->1...
	 */
	public void prim(MGraph graph, int v) {
		// visited[] 标记结点(顶点)是否被访问过
		int visited[] = new int[graph.verxs];
		// visited[] 默认元素的值都是0, 表示没有访问过

		// 把当前这个结点标记为已访问
		visited[v] = 1;
		// h1 和 h2 记录两个顶点的下标
		int h1 = -1;
		int h2 = -1;
		int minWeight = 10000; // 将 minWeight 初始成一个大数,后面在遍历过程中,会被替换
		for (int k = 1; k < graph.verxs; k++) {
			// 因为有 graph.verxs顶点,普利姆算法结束后,有graph.verxs-1边
			// 这个是确定每一次生成的子图 ,和哪个结点的距离最近
			for (int i = 0; i < graph.verxs; i++) {// i结点表示被访问过的结点
				for (int j = 0; j < graph.verxs; j++) {// j结点表示还没有访问过的结点
					if (visited[i] == 1 && visited[j] == 0
							&& graph.weight[i][j] < minWeight) {
						// 替换minWeight(寻找已经访问过的结点和未访问过的结点间的权值最小的边)
						minWeight = graph.weight[i][j];
						h1 = i;
						h2 = j;
					}
				}
			}
			// 找到一条边是最小
			System.out.println("边<" + graph.data[h1] + "," + graph.data[h2]
					+ "> 权值:" + minWeight);
			// 将当前这个结点标记为已经访问
			visited[h2] = 1;
			// minWeight 重新设置为最大值 10000
			minWeight = 10000;
		}

	}
}

class MGraph {
	int verxs; // 表示图的节点个数
	char[] data;// 存放结点数据
	int[][] weight; // 存放边,就是我们的邻接矩阵

	public MGraph(int verxs) {
		this.verxs = verxs;
		data = new char[verxs];
		weight = new int[verxs][verxs];
	}
}


克鲁斯卡尔算法

克鲁斯卡尔(Kruskal)算法,是用来求加权连通图的最小生成树的算法。

基本思想: 按照权值从小到大的顺序选择n-1条边,并保证这n-1条边不构成回路
具体做法: 首先构造一个只含n个顶点的森林,然后依权值从小到大从连通网中选择边加入到森林中,并使森林中不产生回路,直至森林变成一棵树为止


应用-公交站问题

在这里插入图片描述

  1. 某市有7个站点(A, B, C, D, E, F, G) ,现在需要修路把7个站点连通
  2. 各个站点的距离用边线表示(权) ,比如 A – B 距离 12公里
  3. 问:如何修路保证各个站点都能连通,并且总的修建公路总里程最短?

思路分析:

假设,用数组R保存最小生成树结果。

第1步:将边<E,F>加入R中。
边<E,F>的权值最小,因此将它加入到最小生成树结果R中。

第2步:将边<C,D>加入R中。
上一步操作之后,边<C,D>的权值最小,因此将它加入到最小生成树结果R中。

第3步:将边<D,E>加入R中。
上一步操作之后,边<D,E>的权值最小,因此将它加入到最小生成树结果R中。

第4步:将边<B,F>加入R中。
上一步操作之后,边<C,E>的权值最小,但<C,E>会和已有的边构成回路;因此,跳过边<C,E>。同理,跳过边<C,F>。将边<B,F>加入到最小生成树结果R中。

第5步:将边<E,G>加入R中。
上一步操作之后,边<E,G>的权值最小,因此将它加入到最小生成树结果R中。

第6步:将边<A,B>加入R中。
上一步操作之后,边<F,G>的权值最小,但<F,G>会和已有的边构成回路;因此,跳过边<F,G>。同理,跳过边<B,C>。将边<A,B>加入到最小生成树结果R中。

此时,最小生成树构造完成。它包括的边依次是:<E,F> <C,D> <D,E> <B,F> <E,G> <A,B>。

在这里插入图片描述

克鲁斯卡尔和普里姆的区别也就可以看出来了。普里姆算法是从顶点出发,不断寻找相连边的最小权值。而克鲁斯卡尔算法是直接从所有边中找权值最小的。

也正是因为上面的这个区别,导致在普里姆中使用的判断是否形成回路的方法,在克鲁斯卡尔中就不能使用了。就比如第三步,把<D,E>加入R中,如果用普里姆的方法,D和E都被访问过,这条边是不能使用的。

其实这很好理解,普里姆算法每次都会找相邻的节点,它永远都是一棵树。但是克鲁斯卡尔不会,它可能会形成多棵树。

克鲁斯卡尔中判断是否形成回路的方法:
在这里插入图片描述
在将<E,F> <C,D> <D,E>加入到最小生成树R中之后,这几条边的顶点就都有了终点:
C的终点是F
D的终点是F
E的终点是F
F的终点是F

关于终点的说明:
就是将所有顶点按照从小到大的顺序排列好之后,某个顶点的终点就是"与它连通的最大顶点"。

因此,接下来,虽然<C,E>是权值最小的边。但是C和E的终点都是F,即它们的终点相同,因此,将<C,E>加入最小生成树的话,会形成回路。这就是判断回路的方式。也就是说,我们加入的边的两个顶点不能都指向同一个终点,否则将构成回路。


完整代码

import java.util.Arrays;

public class KruskalCase {

	private int edgeNum; //边的个数
	private char[] vertexs; //顶点数组
	private int[][] matrix; //邻接矩阵
	//使用 INF 表示两个顶点不能连通
	private static final int INF = Integer.MAX_VALUE;
	
	public static void main(String[] args) {
		char[] vertexs = {'A', 'B', 'C', 'D', 'E', 'F', 'G'};
		//克鲁斯卡尔算法的邻接矩阵  
	      int matrix[][] = {
	      /*A*//*B*//*C*//*D*//*E*//*F*//*G*/
	/*A*/ {   0,  12, INF, INF, INF,  16,  14},
	/*B*/ {  12,   0,  10, INF, INF,   7, INF},
	/*C*/ { INF,  10,   0,   3,   5,   6, INF},
	/*D*/ { INF, INF,   3,   0,   4, INF, INF},
	/*E*/ { INF, INF,   5,   4,   0,   2,   8},
	/*F*/ {  16,   7,   6, INF,   2,   0,   9},
	/*G*/ {  14, INF, INF, INF,   8,   9,   0}}; 
	      
	      //创建对象实例
	      KruskalCase kruskalCase = new KruskalCase(vertexs, matrix);
	      //kruskalCase.print();
	      //测试
	      kruskalCase.kruskal();
	      
	}
	
	//构造器
	public KruskalCase(char[] vertexs, int[][] matrix) {
		//初始化顶点数和边的个数
		int vlen = vertexs.length;
		
		//初始化顶点
		this.vertexs = new char[vlen];
		for(int i = 0; i < vertexs.length; i++) {
			this.vertexs[i] = vertexs[i];
		}
		
		//初始化边
		this.matrix = new int[vlen][vlen];
		for(int i = 0; i < vlen; i++) {
			for(int j = 0; j < vlen; j++) {
				this.matrix[i][j] = matrix[i][j];
			}
		}
		
		//统计边的条数
		for(int i = 0; i < vlen; i++) {
			for(int j = i + 1; j < vlen; j++) {
				if(this.matrix[i][j] != INF) {
					edgeNum++;
				}
			}
		}
	}
	
	public void kruskal() {
		int index = 0; //表示最后结果数组的索引
		int[] ends = new int[edgeNum]; //用于保存"已有最小生成树" 中的每个顶点在最小生成树中的终点
		//创建结果数组, 保存最后的最小生成树
		EData[] rets = new EData[edgeNum];
		
		//获取图中 所有的边的集合 , 一共有12边
		EData[] edges = getEdges();
		System.out.println("图的边的集合=" + Arrays.toString(edges)); 
		System.out.println("总共"+edges.length+"条边");
		
		//按照边的权值大小进行排序(从小到大)
		sortEdges(edges);
		
		//遍历edges 数组,将边添加到最小生成树中时,判断是准备加入的边否形成了回路,如果没有,就加入 rets, 否则不能加入
		for(int i = 0; i < edgeNum; i++) {
			//获取到第i条边的第一个顶点(起点)
			int p1 = getPosition(edges[i].start); 
			//获取到第i条边的第二个顶点
			int p2 = getPosition(edges[i].end); 
			
			//获取p1这个顶点在已有最小生成树中的终点
			int m = getEnd(ends, p1); 
			//获取p2这个顶点在已有最小生成树中的终点
			int n = getEnd(ends, p2); 
			//是否构成回路
			if(m != n) { //没有构成回路
				ends[m] = n; // 设置m 在"已有最小生成树"中的终点 
				rets[index++] = edges[i]; //有一条边加入到rets数组
			}
		}
		//统计并打印 "最小生成树", 输出  rets
		System.out.println("最小生成树为");
		for(int i = 0; i < index; i++) {
			System.out.println(rets[i]);
		}
	}
	
	//打印邻接矩阵
	public void print() {
		System.out.println("邻接矩阵为: \n");
		for(int i = 0; i < vertexs.length; i++) {
			for(int j = 0; j < vertexs.length; j++) {
				System.out.printf("%12d", matrix[i][j]);
			}
			System.out.println();//换行
		}
	}

	/**
	 * 功能:对边进行排序处理, 冒泡排序
	 * @param edges 边的集合
	 */
	private void sortEdges(EData[] edges) {
		for(int i = 0; i < edges.length - 1; i++) {
			for(int j = 0; j < edges.length - 1 - i; j++) {
				if(edges[j].weight > edges[j+1].weight) {//交换
					EData tmp = edges[j];
					edges[j] = edges[j+1];
					edges[j+1] = tmp;
				}
			}
 		}
	}
	/**
	 * @param ch 顶点的值,比如'A','B'
	 * @return 返回ch顶点对应的下标,如果找不到,返回-1
	 */
	private int getPosition(char ch) {
		for(int i = 0; i < vertexs.length; i++) {
			if(vertexs[i] == ch) { //找到
				return i;
			}
		}
		//找不到,返回-1
		return -1;
	}
	/**
	 * 功能: 获取图中边,放到EData[] 数组中,后面我们需要遍历该数组
	 * 是通过matrix 邻接矩阵来获取
	 * EData[] 形式 [['A','B', 12], ['B','F',7], .....]
	 * @return
	 */
	private EData[] getEdges() {
		int index = 0;
		EData[] edges = new EData[edgeNum];
		for(int i = 0; i < vertexs.length; i++) {
			for(int j = i + 1; j < vertexs.length; j++) {
				if(matrix[i][j] != INF) {
					edges[index++] = new EData(vertexs[i], vertexs[j], matrix[i][j]);
				}
			}
		}
		return edges;
	}
	/**
	 * 功能: 获取下标为i的顶点的终点(), 用于后面判断两个顶点的终点是否相同
	 * @param ends : 数组就是记录了各个顶点对应的终点是哪个,ends 数组是在遍历过程中,逐步形成
	 * @param i : 表示传入的顶点对应的下标
	 * @return 返回的就是 下标为i的这个顶点对应的终点的下标
	 */
	private int getEnd(int[] ends, int i) { 
		while(ends[i] != 0) {
			i = ends[i];
		}
		return i;
	}
 
}

//创建一个类EData ,它的对象实例就表示一条边
class EData {
	char start; //边的一个点
	char end; //边的另外一个点
	int weight; //边的权值
	//构造器
	public EData(char start, char end, int weight) {
		this.start = start;
		this.end = end;
		this.weight = weight;
	}
	//重写toString, 便于输出边信息
	@Override
	public String toString() {
		return "EData [<" + start + ", " + end + ">= " + weight + "]";
	}
	
	
}


迪杰斯特拉(Dijkstra)算法

迪杰斯特拉(Dijkstra)算法介绍

迪杰斯特拉(Dijkstra)算法是典型最短路径算法,用于计算一个结点到其他结点的最短路径。 它的主要特点是以起始点为中心向外层层扩展(广度优先搜索思想),直到扩展到终点为止。

迪杰斯特拉(Dijkstra)算法过程

设置出发顶点为v,顶点集合V{v1,v2,vi…},v到V中各顶点的距离构成距离集合Dis,Dis{d1,d2,di…},Dis集合记录着v到图中各顶点的距离(到自身可以看作0,v到vi距离对应为di)

  1. 从Dis中选择值最小的di并移出Dis集合,同时移出V集合中对应的顶点vi,此时的v到vi即为最短路径
  2. 更新Dis集合,更新规则为:比较v到V集合中顶点的距离值,与v通过vi到V集合中顶点的距离值,保留值较小的一个(同时也应该更新顶点的前驱节点为vi,表明是通过vi到达的)
  3. 重复执行两步骤,直到最短路径顶点为目标顶点即可结束

应用-最短路径

在这里插入图片描述

  1. 战争时期,某乡有7个村庄(A, B, C, D, E, F, G) ,现在有六个邮差,从G点出发,需要分别把邮件分别送到 A, B, C , D, E, F 六个村庄
  2. 各个村庄的距离用边线表示(权) ,比如 A – B 距离 5公里
  3. 问:如何计算出G村庄到 其它各个村庄的最短距离?

完整代码

import java.util.Arrays;

public class DijkstraAlgorithm {

	public static void main(String[] args) {
		char[] vertex = { 'A', 'B', 'C', 'D', 'E', 'F', 'G' };
		// 邻接矩阵
		int[][] matrix = new int[vertex.length][vertex.length];
		final int N = 65535;// 表示不可以连接
		matrix[0] = new int[] { N, 5, 7, N, N, N, 2 };
		matrix[1] = new int[] { 5, N, N, 9, N, N, 3 };
		matrix[2] = new int[] { 7, N, N, N, 8, N, N };
		matrix[3] = new int[] { N, 9, N, N, N, 4, N };
		matrix[4] = new int[] { N, N, 8, N, N, 5, 4 };
		matrix[5] = new int[] { N, N, N, 4, 5, N, 6 };
		matrix[6] = new int[] { 2, 3, N, N, 4, 6, N };
		// 创建 Graph对象
		Graph graph = new Graph(vertex, matrix);
		// 测试
		//graph.showGraph();
		// 测试迪杰斯特拉算法
		graph.dsj(2);
		graph.showDijkstra();
	}
}

class Graph {
	private char[] vertex; // 顶点数组
	private int[][] matrix; // 邻接矩阵
	private VisitedVertex vv; // 已经访问的顶点的集合

	// 构造器
	public Graph(char[] vertex, int[][] matrix) {
		this.vertex = vertex;
		this.matrix = matrix;
	}

	// 显示结果
	public void showDijkstra() {
		vv.show();
	}

	// 显示图
	public void showGraph() {
		for (int[] link : matrix) {
			System.out.println(Arrays.toString(link));
		}
	}

	// 迪杰斯特拉算法实现
	/**
	 * @param index
	 *            表示出发顶点对应的下标
	 */
	public void dsj(int index) {
		vv = new VisitedVertex(vertex.length, index);
		update(index);// 更新index顶点到周围顶点的距离和前驱顶点
		for (int j = 1; j < vertex.length; j++) {
			index = vv.updateArr();// 选择并返回新的访问顶点
			update(index); // 更新index顶点到周围顶点的距离和前驱顶点
		}
	}

	// 更新index下标顶点到周围顶点的距离和周围顶点的前驱顶点
	private void update(int index) {
		int len = 0;
		// 根据遍历我们的邻接矩阵的 matrix[index]行
		for (int j = 0; j < matrix[index].length; j++) {
			// len 含义是 : 出发顶点到index顶点的距离 + 从index顶点到j顶点的距离的和
			len = vv.getDis(index) + matrix[index][j];
			// 如果j顶点没有被访问过,并且 len 小于出发顶点到j顶点的距离,就需要更新
			if (!vv.in(j) && len < vv.getDis(j)) {
				vv.updatePre(j, index); // 更新j顶点的前驱为index顶点
				vv.updateDis(j, len); // 更新出发顶点到j顶点的距离
			}
		}
	}
}

// 已访问顶点集合
class VisitedVertex {
	// 记录各个顶点是否访问过 1表示访问过,0未访问,会动态更新
	public int[] already_arr;
	// 每个下标对应的值为前一个顶点下标, 会动态更新
	public int[] pre_visited;
	// 记录出发顶点到其他所有顶点的距离,比如G为出发顶点,就会记录G到其它顶点的距离,会动态更新,求的最短距离就会存放到dis
	public int[] dis;

	// 构造器
	/**
	 * @param length
	 *            :表示顶点的个数
	 * @param index
	 *            : 出发顶点对应的下标, 比如G顶点,下标就是6
	 */
	public VisitedVertex(int length, int index) {
		this.already_arr = new int[length];
		this.pre_visited = new int[length];
		this.dis = new int[length];
		// 初始化 dis数组
		Arrays.fill(dis, 65535);
		this.already_arr[index] = 1; // 设置出发顶点被访问过
		this.dis[index] = 0;// 设置出发顶点的访问距离为0
	}

	/**
	 * 功能: 判断index顶点是否被访问过
	 * @param index
	 * @return 如果访问过,就返回true, 否则访问false
	 */
	public boolean in(int index) {
		return already_arr[index] == 1;
	}

	/**
	 * 功能: 更新出发顶点到index顶点的距离
	 * 
	 * @param index
	 * @param len
	 */
	public void updateDis(int index, int len) {
		dis[index] = len;
	}

	/**
	 * 功能: 更新pre这个顶点的前驱顶点为index顶点
	 * 
	 * @param pre
	 * @param index
	 */
	public void updatePre(int pre, int index) {
		pre_visited[pre] = index;
	}

	/**
	 * 功能:返回出发顶点到index顶点的距离
	 * @param index
	 */
	public int getDis(int index) {
		return dis[index];
	}

	/**
	 * 继续选择并返回新的访问顶点
	 * @return
	 */
	public int updateArr() {
		int min = 65535, index = 0;
		for (int i = 0; i < already_arr.length; i++) {
			if (already_arr[i] == 0 && dis[i] < min) {
				min = dis[i];
				index = i;
			}
		}
		// 更新 index 顶点被访问过
		already_arr[index] = 1;
		return index;
	}

	// 显示最后的结果
	public void show() {
		/*
		// 输出already_arr
		for (int i : already_arr) {
			System.out.print(i + " ");
		}
		System.out.println();
		
		// 输出pre_visited
		for (int i : pre_visited) {
			System.out.print(i + " ");
		}
		System.out.println();
		
		// 输出dis
		for (int i : dis) {
			System.out.print(i + " ");
		}
		System.out.println();
		*/
		
		// 为了方便看最后的最短距离:
		char[] vertex = { 'A', 'B', 'C', 'D', 'E', 'F', 'G' };
		int count = 0;
		for (int i : dis) {
			if (i != 65535) {
				System.out.print(vertex[count] + "(" + i + ") ");
			} else {
				System.out.println("N ");
			}
			count++;
		}
		System.out.println();
	}
}

弗洛伊德(Floyd)算法

弗洛伊德(Floyd)算法介绍

  1. 和Dijkstra算法一样,弗洛伊德(Floyd)算法也是一种用于寻找给定的加权图中顶点间最短路径的算法。
  2. 弗洛伊德算法(Floyd)计算图中各个顶点之间的最短路径
  3. 迪杰斯特拉算法用于计算图中某一个顶点到其他顶点的最短路径。
  4. 弗洛伊德算法 和 迪杰斯特拉算法 的比较:迪杰斯特拉算法通过选定的被访问顶点,求出从出发访问顶点到其他顶点的最短路径;弗洛伊德算法中每一个顶点都是出发访问点,所以需要将每一个顶点看做被访问顶点,求出从每一个顶点到其他顶点的最短路径。

应用-最短路径

在这里插入图片描述

  1. 某乡有7个村庄(A, B, C, D, E, F, G)
  2. 各个村庄的距离用边线表示(权) ,比如 A – B 距离 5公里
  3. 问:如何计算出各村庄到 其它各村庄的最短距离?

思路分析:

  1. 设置顶点vi到顶点vk的最短路径已知为Lik,顶点vk到vj的最短路径已知为Lkj,顶点vi到vj的路径为Lij,则vi到vj的最短路径为:min((Lik+Lkj),Lij),vk的取值为图中所有顶点,则可获得vi到vj的最短路径
  2. 至于vi到vk的最短路径Lik或者vk到vj的最短路径Lkj,是以同样的方式获得

首先,距离表中只记录和某顶点相邻顶点之间的边。自己与自己就是0,暂时不相邻的为N。
在这里插入图片描述
第一轮循环中,以A(下标为:0)作为中间顶点。

将A作为中间顶点情况有

  1. C-A-G [9]
  2. C-A-B [12]
  3. G-A-B [7]

把A作为中间顶点的所有情况都进行遍历, 就可以用来更新距离表。当然要和之前距离表本来就存在的距离比较,看是否需要更新。

距离表更新为:
在这里插入图片描述
之后的循环和上面一样。将所有点作为过一次中间顶点,即可完成距离表。


完整代码

package com.guigu.floyd;

import java.util.Arrays;

public class FloydAlgorithm {

	public static void main(String[] args) {
		char[] vertex = { 'A', 'B', 'C', 'D', 'E', 'F', 'G' };
		// 创建邻接矩阵
		int[][] matrix = new int[vertex.length][vertex.length];
		final int N = 65535;
		matrix[0] = new int[] { 0, 5, 7, N, N, N, 2 };
		matrix[1] = new int[] { 5, 0, N, 9, N, N, 3 };
		matrix[2] = new int[] { 7, N, 0, N, 8, N, N };
		matrix[3] = new int[] { N, 9, N, 0, N, 4, N };
		matrix[4] = new int[] { N, N, 8, N, 0, 5, 4 };
		matrix[5] = new int[] { N, N, N, 4, 5, 0, 6 };
		matrix[6] = new int[] { 2, 3, N, N, 4, 6, 0 };

		// 创建 Graph 对象
		Graph graph = new Graph(vertex.length, matrix, vertex);
		// 调用弗洛伊德算法
		graph.floyd();
		graph.show();
	}

}

// 创建图
class Graph {
	private char[] vertex; // 存放顶点的数组
	private int[][] dis; // 保存,从各个顶点出发到其它顶点的距离,最后的结果,也是保留在该数组
	private int[][] pre;// 保存到达目标顶点的前驱顶点

	// 构造器
	/**
	 * @param length
	 *            大小
	 * @param matrix
	 *            邻接矩阵
	 * @param vertex
	 *            顶点数组
	 */
	public Graph(int length, int[][] matrix, char[] vertex) {
		this.vertex = vertex;
		this.dis = matrix;
		this.pre = new int[length][length];
		// 对pre数组初始化, 注意存放的是前驱顶点的下标
		for (int i = 0; i < length; i++) {
			Arrays.fill(pre[i], i);
		}
	}

	public void show() {
		// 为了显示便于阅读:
		for (int k = 0; k < dis.length; k++) {
			/*
			// 先将pre数组输出的一行
			for (int i = 0; i < dis.length; i++) {
				System.out.print(vertex[pre[k][i]] + " ");
			}
			System.out.println();
			*/
			// 输出dis数组的一行数据
			for (int i = 0; i < dis.length; i++) {
				System.out.print("(" + vertex[k] + "到" + vertex[i] + "的最短路径是"
						+ dis[k][i] + ") ");
			}
			System.out.println();
			System.out.println();
		}
	}

	// 弗洛伊德算法
	public void floyd() {
		int len = 0; // 变量保存距离
		// 对中间顶点遍历, k 就是中间顶点的下标 
		for (int k = 0; k < dis.length; k++) { 
			// 从i顶点开始出发
			for (int i = 0; i < dis.length; i++) {
				// 到达j顶点 
				for (int j = 0; j < dis.length; j++) {
					// 求出从i 顶点出发,经过 k中间顶点,到达 j顶点距离
					len = dis[i][k] + dis[k][j];
					if (len < dis[i][j]) {// 如果len小于 dis[i][j]
						dis[i][j] = len;// 更新距离
						pre[i][j] = pre[k][j];// 更新前驱顶点
					}
				}
			}
		}
	}
}


马踏棋盘算法

马踏棋盘算法介绍和游戏演示

  1. 马踏棋盘算法也被称为骑士周游问题
  2. 将马随机放在国际象棋的8×8棋盘Board[0~7][0~7]的某个方格中,马按走棋规则(马走日字)进行移动。要求每个方格只进入一次,走遍棋盘上全部64个方格
  3. 游戏演示: http://www.4399.com/flash/146267_2.htm
    在这里插入图片描述

马踏棋盘游戏代码实现

  1. 马踏棋盘问题(骑士周游问题)实际上是图的深度优先搜索(DFS)的应用。
  2. 如果使用回溯(就是深度优先搜索)来解决,假如马儿踏了53个点,如图:走到了第53个,坐标(1,0),发现已经走到尽头,没办法,那就只能回退了,查看其他的路径,就在棋盘上不停的回溯……
  3. 除此以外,还可以使用贪心算法进行优化。

骑士周游问题的解决步骤和思路

  1. 创建棋盘 chessBoard , 是一个二维数组
  2. 将当前位置设置为已经访问,然后根据当前位置,计算马儿还能走哪些位置,并放入到一个集合中(ArrayList), 最多有8个位置, 每走一步,就使用step+1
  3. 遍历ArrayList中存放的所有位置,看看哪个可以走通 , 如果走通,就继续,走不通,就回溯.
  4. 判断马儿是否完成了任务,使用step 和应该走的步数比较 , 如果没有达到数量,则表示没有完成任务。
    注意:马儿不同的走法(策略),会得到不同的结果,效率也会有影响(优化)

使用贪心算法对原来的算法优化

  1. 我们获取当前位置,可以走的下一个位置的集合
    ArrayList ps = next(new Point(column, row));
  2. 我们需要对 ps 中所有的Point 的下一步的所有集合的数目,进行非递减排序,就ok ,

完整代码

import java.awt.Point;
import java.util.ArrayList;
import java.util.Collections;
import java.util.Comparator;

public class HorseChessboard {

	private static int X; // 棋盘的列数
	private static int Y; // 棋盘的行数
	// 创建一个数组,标记棋盘的各个位置是否被访问过
	private static boolean visited[];
	// 使用一个属性,标记是否棋盘的所有位置都被访问
	private static boolean finished; // 如果为true,表示成功

	public static void main(String[] args) {
		System.out.println("骑士周游算法,开始运行~~");
		// 测试骑士周游算法是否正确
		X = 8;
		Y = 8;
		int row = 1;    // 马儿初始位置的行,从1开始编号
		int column = 1; // 马儿初始位置的列,从1开始编号
		// 创建棋盘
		int[][] chessboard = new int[X][Y];
		visited = new boolean[X * Y];// 初始值都是false
		// 测试一下耗时
		long start = System.currentTimeMillis();
		traversalChessboard(chessboard, row - 1, column - 1, 1);
		long end = System.currentTimeMillis();
		System.out.println("共耗时: " + (end - start) + " 毫秒");

		// 输出棋盘的最后情况
		for (int[] rows : chessboard) {
			for (int step : rows) {
				System.out.print(step + "\t");
			}
			System.out.println();
		}
	}

	/**
	 * 完成骑士周游问题的算法
	 * 
	 * @param chessboard
	 *            棋盘
	 * @param row
	 *            马儿当前的位置的行 从0开始
	 * @param column
	 *            马儿当前的位置的列 从0开始
	 * @param step
	 *            是第几步 ,初始位置就是第1步
	 */
	public static void traversalChessboard(int[][] chessboard, int row,
			int column, int step) {
		chessboard[row][column] = step;
		visited[row * X + column] = true; // 标记该位置已经访问
		// 获取当前位置可以走的下一个位置的集合
		ArrayList<Point> ps = next(new Point(column, row));
		// 对ps进行排序,排序的规则就是对ps的所有的Point对象的下一步的位置的数目,进行非递减排序
		sort(ps);
		// 遍历 ps
		while (!ps.isEmpty()) {
			Point p = ps.remove(0);// 取出下一个可以走的位置
			// 判断该点是否已经访问过
			if (!visited[p.y * X + p.x]) {// 说明还没有访问过
				traversalChessboard(chessboard, p.y, p.x, step + 1);
			}
		}
		// 判断马儿是否完成了任务,使用 step 和应该走的步数比较 ,
		// 如果没有达到数量,则表示没有完成任务,将整个棋盘置0
		// 说明: step < X * Y 成立的情况有两种
		// 1. 棋盘到目前位置,仍然没有走完
		// 2. 棋盘处于一个回溯过程
		if (step < X * Y && !finished) {
			chessboard[row][column] = 0;
			visited[row * X + column] = false;
		} else {
			finished = true;
		}

	}

	/**
	 * 功能: 根据当前位置(Point对象),计算马儿还能走哪些位置(Point),并放入到一个集合中(ArrayList), 最多有8个位置
	 * @param curPoint
	 * @return
	 */
	public static ArrayList<Point> next(Point curPoint) {
		// 创建一个ArrayList
		ArrayList<Point> ps = new ArrayList<Point>();
		// 创建一个Point
		Point p1 = new Point();
		// 表示马儿可以走5这个位置
		if ((p1.x = curPoint.x - 2) >= 0 && (p1.y = curPoint.y - 1) >= 0) {
			ps.add(new Point(p1));
		}
		// 判断马儿可以走6这个位置
		if ((p1.x = curPoint.x - 1) >= 0 && (p1.y = curPoint.y - 2) >= 0) {
			ps.add(new Point(p1));
		}
		// 判断马儿可以走7这个位置
		if ((p1.x = curPoint.x + 1) < X && (p1.y = curPoint.y - 2) >= 0) {
			ps.add(new Point(p1));
		}
		// 判断马儿可以走0这个位置
		if ((p1.x = curPoint.x + 2) < X && (p1.y = curPoint.y - 1) >= 0) {
			ps.add(new Point(p1));
		}
		// 判断马儿可以走1这个位置
		if ((p1.x = curPoint.x + 2) < X && (p1.y = curPoint.y + 1) < Y) {
			ps.add(new Point(p1));
		}
		// 判断马儿可以走2这个位置
		if ((p1.x = curPoint.x + 1) < X && (p1.y = curPoint.y + 2) < Y) {
			ps.add(new Point(p1));
		}
		// 判断马儿可以走3这个位置
		if ((p1.x = curPoint.x - 1) >= 0 && (p1.y = curPoint.y + 2) < Y) {
			ps.add(new Point(p1));
		}
		// 判断马儿可以走4这个位置
		if ((p1.x = curPoint.x - 2) >= 0 && (p1.y = curPoint.y + 1) < Y) {
			ps.add(new Point(p1));
		}
		return ps;
	}

	// 根据当前这个一步的所有的下一步的选择位置,进行非递减排序, 减少回溯的次数
	public static void sort(ArrayList<Point> ps) {
		Collections.sort(ps, new Comparator<Point>() {
			@Override
			public int compare(Point o1, Point o2) {
				// TODO Auto-generated method stub
				// 获取到o1的下一步的所有位置个数
				int count1 = next(o1).size();
				// 获取到o2的下一步的所有位置个数
				int count2 = next(o2).size();
				if (count1 < count2) {
					return -1;
				} else if (count1 == count2) {
					return 0;
				} else {
					return 1;
				}
			}

		});
	}
}

  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

只爭朝夕不負韶華

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值