【校内测 11.1】 【矩乘】 网格游走
题目
解题思路
和这道题有一点点像
也是求出t秒时刻后i号机器人到j号位的方案数
然后全排列出,每个机器人该到的位置,将它们的方案数相乘即为出现这种状态的方案数,累加进最后答案里
代码
#include<iostream>
#include<cstring>
#include<cstdio>
using namespace std;
const int mo=1e9+7;
struct lzf{
int n,m;
long long l[10][10];
}a,p;
long long n,da,sum,f[10][10];
int vis[10],b[10];
lzf operator * (lzf a,lzf b)
{
lzf c;
c.n=a.n,c.m=b.m;
memset(c.l,0,sizeof(c.l));
for (int i=1;i<=c.n;i++)
for (int j=1;j<=c.m;j++)
for (int k=1;k<=a.m;k++)
c.l[i][j]=(c.l[i][j]+a.l[i][k]*b.l[k][j]%mo)%mo;
return c;
}
void power(long long n)
{
if (n==1)
{
a=p;
return;
}
power(n>>1);
a=a*a;
if (n&1) a=a*p;
}
long long work(int x,int y)
{
lzf d;
d.n=1,d.m=9;
for (int i=1;i<=9;i++) d.l[1][i]=0;
d.l[1][x]=1;
d=d*a;
return d.l[1][y];
}
void dfs(int x)
{
if (x>9)
{
sum=1;
for (int i=1;i<=9;i++)
sum=sum*f[i][b[i]]%mo;
da=(da+sum)%mo;
return;
}
for (int i=1;i<=9;i++)
if (!vis[i])
{
vis[i]=1;
b[x]=i;
dfs(x+1);
vis[i]=b[x]=0;
}
}
int main()
{
p.n=p.m=9;
p.l[1][1]=p.l[1][2]=p.l[1][4]=1;
p.l[2][1]=p.l[2][2]=p.l[2][3]=p.l[2][5]=1;
p.l[3][2]=p.l[3][3]=p.l[3][6]=1;
p.l[4][1]=p.l[4][4]=p.l[4][5]=p.l[4][7]=1;
p.l[5][2]=p.l[5][4]=p.l[5][5]=p.l[5][6]=p.l[5][8]=1;
p.l[6][3]=p.l[6][5]=p.l[6][6]=p.l[6][9]=1;
p.l[7][4]=p.l[7][7]=p.l[7][8]=1;
p.l[8][5]=p.l[8][7]=p.l[8][8]=p.l[8][9]=1;
p.l[9][6]=p.l[9][8]=p.l[9][9]=1; //邻接表建矩阵
scanf("%lld",&n);
power(n); //快速幂,跑去t秒后方案数
memset(vis,0,sizeof(vis));
for (int i=1;i<=9;i++)
for (int j=1;j<=9;j++)
f[i][j]=work(i,j); //第i号机器人最后在j号位的方案数
dfs(1); //全排列统计答案
printf("%lld",da);
return 0;
}