# 得到每一行的数据:[]
datas = open('data/test.txt', 'r', encoding='utf-8').read().split("\n")
#或者对jieba分词进行切分,得到关于分词的预料模型
#words_datas = [[i for i in (jieba.cut(data)) if i != " "] for data in datas]
# 得到一行的单个字 生成二维的句子与jieba分词之后的单个字:[[],...,[]]
word_datas = [[i for i in data[:-2] if i != " "] for data in datas]
model = Word2Vec(
word_datas, # 需要训练的文本
vector_size=10, # 词向量的维度
window=5, # 句子中当前单词和预测单词之间的最大距离
min_count=1, # 忽略总频率低于此的所有单词 出现的频率小于 min_count 不用作词向量
workers=0, # 使用这些工作线程来训练模型(使用多核机器进行更快的训练)
sg=0, # 训练方法 1:skip-gram 0;CBOW。
epochs=10 # 语料库上的迭代次数
)
# 模型保存
model.save('word.model')
# 字向量保存
model.wv.save_word2vec_format('word_data.vector', # 保存路径
binary=False # 如果为 True,则数据将以二进制 word2vec 格式保存,否则将以纯文本格式保存
)
# 模型中的 wv 和 syn1neg 都可以单独保存
pkl.dump([model.wv.index_to_key, model.wv.key_to_index, model.wv.vectors], open("WordPartialWeight.pkl", "wb"))
这里的参数配置,根据自己需要进行配置,在word2vec文件中可以查看配置选项,其他未配置的是默认。
使用自己训练的词向量模型:
# 1 通过模型加载词向量(recommend)
model = gensim.models.Word2Vec.load('words.model')
# 2 通过词向量加载
vector = KeyedVectors.load_word2vec_format('words_data.vector')
进行具体的下游任务