题目描述
棋盘上 AA 点有一个过河卒,需要走到目标 BB 点。卒行走的规则:可以向下、或者向右。同时在棋盘上 CC 点有一个对方的马,该马所在的点和所有跳跃一步可达的点称为对方马的控制点。因此称之为“马拦过河卒”。
棋盘用坐标表示,AA 点 (0, 0)(0,0)、BB 点 (n, m)(n,m),同样马的位置坐标是需要给出的。
现在要求你计算出卒从 AA 点能够到达 BB 点的路径的条数,假设马的位置是固定不动的,并不是卒走一步马走一步。
输入格式
一行四个正整数,分别表示 BB 点坐标和马的坐标。
输出格式
一个整数,表示所有的路径条数。
输入输出样例
输入
6 6 3 3
输出
6
说明/提示
对于 100%的数据,0≤n,m≤20,0≤马的坐标≤20。
思路:
到达一个点 (x,y),可能从 (x−1,y) 或者 (x,y−1) 走来,因此方案数为到 (x-1,y)和到 (x,y−1) 方案的总和。边界情况有三种:原点处方案数为1,x=0时方案是(x,y−1) 方案的总和,y=0时方案是(x-1,y) 方案的总和。
代码:
#include <bits/stdc++.h>
using namespace std;
long long w[25][25],f[25][25]={0}; //f数组各元素初始化为0
int mx[]={1,2,-1,-2,1,2,-1,-2};
int my[]={2,1,2,1,-2,-1,-2,-1}; //控制点的范围
int main()
{
int x1,y1,x2,y2,i,j;
cin>>x1>>y1>>x2>>y2;
f[x2][y2]=1;
for(i=0;i<8;i++)
f[x2+mx[i]][y2+my[i]]=1; //被控制点标记为1
for(i=0;i<=x1;i++)
for(j=0;j<=y1;j++)
if(!f[i][j]) //不在控制点上
{
if(i==0&&j==0) //初始点
w[i][j]=1;
else if(i==0&&j>0) //i=0边界
w[0][j]=w[i][j-1];
else if(i>0&&j==0) //j=0边界
w[i][0]=w[i-1][j];
else //只能向右和向下走
w[i][j]=w[i][j-1]+w[i-1][j];
}
cout<<w[x1][y1]; //可行路径数
return 0;
}
结果: