洛谷1002——过河卒

题目描述
棋盘上 AA 点有一个过河卒,需要走到目标 BB 点。卒行走的规则:可以向下、或者向右。同时在棋盘上 CC 点有一个对方的马,该马所在的点和所有跳跃一步可达的点称为对方马的控制点。因此称之为“马拦过河卒”。

棋盘用坐标表示,AA 点 (0, 0)(0,0)、BB 点 (n, m)(n,m),同样马的位置坐标是需要给出的。

现在要求你计算出卒从 AA 点能够到达 BB 点的路径的条数,假设马的位置是固定不动的,并不是卒走一步马走一步。

输入格式
一行四个正整数,分别表示 BB 点坐标和马的坐标。

输出格式
一个整数,表示所有的路径条数。

输入输出样例
输入
6 6 3 3
输出
6
说明/提示
对于 100%的数据,0≤n,m≤20,0≤马的坐标≤20。

思路:
到达一个点 (x,y),可能从 (x−1,y) 或者 (x,y−1) 走来,因此方案数为到 (x-1,y)和到 (x,y−1) 方案的总和。边界情况有三种:原点处方案数为1,x=0时方案是(x,y−1) 方案的总和,y=0时方案是(x-1,y) 方案的总和。

代码:

#include <bits/stdc++.h>
using namespace std;
long long w[25][25],f[25][25]={0}; //f数组各元素初始化为0 
int mx[]={1,2,-1,-2,1,2,-1,-2}; 
int my[]={2,1,2,1,-2,-1,-2,-1}; //控制点的范围
int main()
{
	int x1,y1,x2,y2,i,j;
	cin>>x1>>y1>>x2>>y2;
	f[x2][y2]=1;
	for(i=0;i<8;i++)
		f[x2+mx[i]][y2+my[i]]=1; //被控制点标记为1 
	for(i=0;i<=x1;i++)
		for(j=0;j<=y1;j++)
		    if(!f[i][j]) //不在控制点上 
			{
				if(i==0&&j==0) //初始点 
					w[i][j]=1;
				else if(i==0&&j>0) //i=0边界 
					w[0][j]=w[i][j-1];
				else if(i>0&&j==0) //j=0边界
					w[i][0]=w[i-1][j];
				else  //只能向右和向下走 
					w[i][j]=w[i][j-1]+w[i-1][j];
			}
	cout<<w[x1][y1]; //可行路径数 
	return 0;
}

结果:

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值