莫烦pytorch学习笔记(二)

跟着视频写一个回归神经网络

看一下最终目标
在这里插入图片描述

导入所需库

分别导入torch库,宏定义神经元类型(自动梯度)Variable,定义激励函数库F,由于希望过程可视化所以导入matplotlib库

import torch
from torch.autograd import Variable
import torch.nn.functional as F
import matplotlib.pyplot as plt

生成所需数据

生成被拟合数据x

x = torch.unsqueeze(torch.linspace(-1,1,100),dim=1)

  • 原本linspace(-1,1,100)产生的是一维数据,是-1到1的100个数字。
    查看维度是一维数组:torch.Size([100])
  • 使用unsqueeze()并指定在下标1的位置增加一个维度,扩展后变成100行1列 。
    查看维度是二维矩阵: torch.Size([100, 1])

设置单个x对应的y坐标

处理输出y的情况:x取平方+一些噪点:
y=x.pow(2)+0.2*torch.rand(x.size())

转换为variable形式,新版本不用写

x=Variable(x)      
y=Variable(y)

可以查看一下效果:

plt.scatter(x.numpy(),y.numpy())        #转化为numpy类型
plt.show()

在这里插入图片描述

最重要的定义网络

类Net用torch.nn.Module从torch继承了Module类。

class Net(torch.nn.Module):             #从torch继承了Module类
    def __init__(self,n_feature,n_hidden,n_output):               #初始化时定义的,输入个数,隐藏层神经元个数,输出个数
        super().__init__()      								  #继承父类功能(官方步骤)
        self.hidden = torch.nn.Linear(n_feature,n_hidden)      	  #隐藏层:输入数据个数,隐藏层神经元个数,
        self.predict = torch.nn.Linear(n_hidden,n_output)         #预测层:输入是前面的hidden,输出个数

    #神经元之间传递是线性,非线性是由激励函数实现的

    def forward(self,x):                    # 前向传递,输入信息是x
        x=F.relu(self.hidden(x))            #使用一个hidden层加工x,输出n个神经元,进入relu函数激活
        x=self.predict(x)                   #将x放入预测层,并不希望结果被截断,所以不用外面套一层F.relu()
        return x

神经元之间传递是线性,非线性是由激励函数实现的

关键定义两个方法:__init__forward

  • __init__ () 初始化函数的参数:默认的self,输入个数,隐藏层神经元个数,输出个数。
    然后要用规定代码super().__init__()继承父类功能
    最后定义隐藏层和预测层。
  • forward() 前向传播函数的参数是输入x。在前向传播中,使用一个hidden层加工x,输出n个神经元,再进入F.relu()函数激活。最终把这个x放入预测层。

搭建网络

net = Net(1,10,1)
因为只输入x值,输入个数为1,设定10个隐藏层,最终输出唯一的y,即1个输出。

可使用print(net)查看网络,输出:

Net(
  (hidden): Linear(in_features=1, out_features=10, bias=True)       
  (predict): Linear(in_features=10, out_features=1, bias=True)
)

优化网络

optimizer = torch.optim.SGD(net.parameters(),lr=0.5)

调用torch的优化方法,选择常用的SGD优化器。 parameters是net的所有参数 lr是梯度下降速度(也就是学习速度,过快过慢都不行)

loss_function=torch.nn.MSELoss()
定义处理误差的方法 这里MSE是均方差处理损失,分类一般用其他的损失处理方法

使用网络进行回归

for t in range(100):                # 训练100次
    prediction = net(x)             # 预测结果=100个数字经过net正向传播的100个值
    loss = loss_function(prediction,y)
    optimizer.zero_grad()           #因为梯度累加,先要梯度降为0
    loss.backward()                 #反向传递
    optimizer.step()                #优化梯度,其实就是找正确结果

整体代码及注释

建议复制到编辑器,配合高亮看。

其中matplotlib相关绘图代码我也看不懂,也不是重点

import torch
from torch.autograd import Variable
import torch.nn.functional as F
import matplotlib.pyplot as plt

x = torch.unsqueeze(torch.linspace(-1,1,100),dim=1)
#原本linspace产生的是一维数据:torch.Size([100])
#扩展后变成100行1列  torch.Size([100, 1])
#unsqueeze对数据维度进行扩充,用dim指定位置,给指定位置维度加1

y=x.pow(2)+0.2*torch.rand(x.size())         #x平方+一些噪点

x=Variable(x)               #转换为variable形式,新版本不用写
y=Variable(y)

#只是作图查看一下
#plt.scatter(x.numpy(),y.numpy())        #转化为numpy类型
#plt.show()


class Net(torch.nn.Module):             #从torch继承了Module类
    def __init__(self,n_feature,n_hidden,n_output):                 #初始化时定义的,输入个数,隐藏层神经元个数,输出个数
        super().__init__()      									#继承父类功能(官方步骤)
        self.hidden = torch.nn.Linear(n_feature,n_hidden)      		#隐藏层:输入数据个数,隐藏层神经元个数,
        self.predict = torch.nn.Linear(n_hidden,n_output)           #预测层:输入是前面的hidden,输出个数

    #神经元之间传递是线性,非线性是由激励函数实现的

    def forward(self,x):                    # 前向传递,输入信息是x
        x=F.relu(self.hidden(x))            #使用一个hidden层加工x,输出n个神经元,进入relu函数激活
        x=self.predict(x)                   #将x放入预测层,并不希望结果被截断,所以不用外面套一层F.relu()
        return x

net = Net(1,10,1)           #因为只输入x值,输入个数为1,设定10个隐藏层,最终输出唯一的y,即1个输出。

'''
print(net)                  #查看网络

Net(
  (hidden): Linear(in_features=1, out_features=10, bias=True)       
  (predict): Linear(in_features=10, out_features=1, bias=True)
)
输入一个x值,得到对应的y值
隐藏层输入1,输出10
预测层输入10,输出1
'''

plt.ion()             #实时打印过程
plt.show()



# 优化神经网络
optimizer = torch.optim.SGD(net.parameters(),lr=0.5)
# 调用torch的优化方法中,选择常用的SGD优化器。  parameters是net的所有参数   lr是梯度下降速度
loss_function=torch.nn.MSELoss()        #定义处理误差的方法  这里MSE是均方差处理损失,分类一般用其他的损失处理方法


for t in range(100):                # 训练100次
    prediction = net(x)             # 预测结果=100个数字经过net正向传播的100个值
    loss = loss_function(prediction,y)
    optimizer.zero_grad()           #因为梯度累加,先要梯度降为0
    loss.backward()                 #反向传递
    optimizer.step()                #优化梯度,其实就是找正确结果

# 使整个过程可视化 
    if t%5==0:              #每五步打印一次
        plt.cla()
        plt.scatter(x.numpy(),y.numpy())
        plt.plot(x.detach().numpy(),prediction.detach().numpy(),'r-',lw=5)
        #当计算中的数据类型为tensor时,想要获取其具体的数值,由于它带梯度值时,不能直接转为numpy格式,所以最好不论如何都调用一下a.detach().numpy(),其中a是要转换的数据。
        plt.text(0.5,0,'loss=%.4f'%loss.data,fontdict={'size':20,'color':'red'})
        plt.pause(0.2)
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值